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algebra is the unique determination of the mixing angle
0 and the equality of the p and ~ masses. We are able
to get a fit to experiment with only two independent
parameters, which may be taken as m, and mz*. The
good agreement with experiment strongly indicates that
the schemes are basically correct. Further refinement is
possible by adding terms that break U(3) into SU(3)
ISU(1). For example, such a model is considered by
Brown, Munczek, and Singer. "Our analysis shows that

'4 L. M. Brown, H. Munczek, and P. Singer, Phys. Rev, Letters
21, 707 (1968).

such a term is of lower order in symmetry breaking
than in SU(3) breaking.
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We present a comprehensive phenomenological examination of the Veneziano ansatz for pion-nucleon
and kaon-nucleon processes. Using invariant amplitudes constructed as sums of beta-function terms, we
attempt to fit simultaneously all the relevant high- and low-energy scattering data as well as the elastic
widths of baryon resonances. We discuss a useful technique for ensuring that the theoretical amplitudes
will possess the observed spin-parity structure of the physical spectrum of baryon states. Our main con-
clusions are the following: (a) Sizable subsidiary terms are required. (b) The predicted duality relation
between the s-channel (baryon) and the t-channel (meson) Regge poles is not supported quantitatively.
(c) Using the polynomial form for residue functions suggested by the model, we have performed detailed
fits to all ~X backward data and elastic widths. The model fails to provide an adequate extrapolation from
the scattering data to the widths of the ne (1238) and its recurrences; acceptable agreement is found for the
other trajectories. Moreover, the residues of the AN trajectories are in marked disagreement with exchange
degeneracy. (d) Within a factor of 2 in amplitude, the model reproduces available EN charge-exchange
data from threshold to the highest energy. (e) A Pomeranchuk trajectory with normal slope (az'=1 GeV ')
is consistent with both the Veneziano model and all data. (f) The model does not provide any natural
resolution of the di%culties inherent in classical Regge-pole model its, and thus supports the view that
Regge cuts are important.

INTRODUCTION

HE proposal by Veneziano' of an elegant beta-
function representation for the hadronic scatter-

ing amplitude has opened a new chapter in theoretical
investigations of strong-interaction phenomena. ' In a
simple closed form, the amplitude is analytic, crossing-
symmetric, and has Regge behavior at high energies.
Moreover, in a straightforward fashion, it can be ex-
panded as a sum of zero-total-width resonance-pole
terms, thus exhibiting a form of duality by quantita-
tively associating asymptotic behavior to low-energy

*Work supported in part by the U. S. Atomic Energy
Commission.

t Faculty Fellow, on leave from Dartmouth College, Hanover,
X. H. 03755.' G. Veneziano, Nuovo Cimento 57A, 190 (1968).' See, e.g. , J. A. Shapiro, Phys. Rev. 179, 1345 (1969),and, for
further references, G. Veneziano, in Proceedings of The Coral
Gables Conference, 1969 (unpublished); S. Fubini, Comments
Nucl. Particle Phys. 3, 22 (1969); S. Weinberg, ibid. 3, 28 (1969).'R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(1968); C. Schmid, Phys. Rev. Letters 20, 689 (1968).

resonance structure in one simple function. In addition,
research has revealed an interesting relationship of the
representation to partially conserved axial-vector cur-
rent (PCAC) requirements for processes involving
pion s.

From the phenomenological point of view, the
Veneziano representation provides several attractive
possibilities. It relates the parametrization of the
residue structure of a Regge pole to the trajectory
itself, removing the erstwhile freedom of an arbitrary
multiplicative form factor in the momentum transfer t.
Also, assuming that a given physical process can be
represented by the sum of a small number of beta-
function terms, the representation provides a strong
quantitative connection between forward (l—0) and
backward (u=0) scattering at high energy —features
of the data which, dominated by distinct Regge-pole

' C. Lovelace, Phys. Letters 28B, 264 (1968).
5 M. Ademollo, G. Veneziano, and S. Weinberg, Phys. Rev.

Letters 22, 83 (1969).
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exchanges, have until now seemed uncorr elated.
Furthermore, the extension of the beta-function repre-
sentation from the quasi-two-body scattering do-
main' '4 ' to multiparticle processes promises, among
other things, an understanding of interference effects
at the locus of intersecting resonance bands in Dalitz
plots. 4 This last feature requires for its implementation,
of course, some procedure for overcoming the unitarity-
violating zero-width aspect of the model. These phe-
nomenological consequences of the model are largely
untested as yet.

In this paper we present a critical discussion of meson-
baryon scattering within the framework of the Vene-
ziano model. ' Because pion-nucleon and kaon-nucleon
scattering are perhaps the best studied hadronic pro-
cesses, both theoretically and phenomenologically, it
should be instructive to examine in detail the extent to
which the model increases our understanding of these
processes. Our aim is to indicate in a comprehensive
fashion both the strong points and the limitations of the
Veneziano beta-function par ametrization for these
processes.

Very recently, enthusiasm has been generated for the
point of view which holds that the Veneziano form is to
be regarded as a Born approximation. ' Presumably this
means that "higher-order" terms would be important
in achieving agreement with nature; for example, a
"unitarized" version is suggested by Mandelstam to
eliminate the parity doubling which occurs in his quark-
substrate model even for meson trajectories. The
methods for obtaining the higher-order terms and/or
unitarity corrections are as yet ill defined and are likely
to be involved. In our investigation, we sought to
represent meson-baryon scattering simply as a sum of
beta functions, and our conclusions are limited to that
viewpoint. 8

Whereas there are certain general aspects of the
Veneziano-type model which are helpful in gaining a
unified qualitative picture of strong-interaction phe-
nomena, our conclusions on the quantitative side are
somewhat pessimistic. Detailed empirical knowledge of
meson-baryon scattering is far more sophisticated than
the capabilities of the model. To be sure, it is very
possibly true that a finite set of resonance widths and a
finite number of differential cross-section points can
be fitted using a similarly finite number of beta-function

' Previous studies of meson-baryon scattering include the papers
on pion-nucleon scattering by M. Virasoro, Phys. Rev. 184, 1621
(1969); K. Igi, Phys. Letters 28$, 330 (1968); Y. Hara, Phys.
Rev. 182, 1906 (1969); R. Amann, Nuovo Cimento Letters 2,
87 (1969); University of Chicago Report No. EFI 69-27 (un-
published); and those on kaon-nucleon scattering by K. Igi and
J. Storrow, Nuovo Cimento 62A, 972 (1969); T. Inami, ibid.
63A, 987 (1969); K. Pretzl and K. Igi, ibid. 63A, 609 (1969); O.
Miyamura considered xlV —+ gÃ in Tohoku Report No. Tu/69/41
(unpublished).' S. Mandelstam, Phys. Rev. 184, 1625 (1969); K. Kikkawa,
B. Sakita, and M. A. Virasoro, ibid. 184, 1956 (1969).

We also do not consider the triple-product representation
suggested by M. A. Virasoro LPhys. Rev. 17?, 2309 (1969)g nor
the parametrization of S. Mandelstam /ibid. 183, 1374 (1969)g.

terms. However, the more terms one is forced to employ,
the smaller is the predictive —or even the unifying—
content of the model. In particular, many features of
the data enable one to demonstrate the existence of
sizable subsidiary' terms in the Veneziano expansion.
Moreover, we find it impossible to achieve a compelling
representation which properly relates even the magni-
tudes of the leading-trajectory baryon-resonance widths
with the sizes of the forward and backward differential
cross sections.

Outside the realm of precise fits to data, however,
some useful features emerge. First, there is the relation
between the asymptotic t-channel Regge-pole param-
eters and the qualitative behavior of the s-channel
resonances of the intermediate-energy range. We have
in mind, for example, the crossover effect; this is dis-
cussed in Secs. II A and III. Second, the Veneziano
representation yields a new method for quantitatively
estimating the nonasymptotic corrections to the Regge
formalism. This could be useful for determining how

good a fit one should demand from a high-energy
approximation. Finally, as has been pointed out by
Virasoro and Amann, ' it suggests a possibly useful
parametrization of the variation of baryon widths as a
function of their mass.

In Sec. I, after establishing notation, we focus upon
those technical features of the Veneziano formula that
are relevant to a reasonable description of meson-
baryon scattering. These include signature, parity
doubling, PCAC, positivity, and the absence of ghosts.
After these theoretical points, we review in Sec. II the
experimental picture of meson-baryon scattering which
the Veneziano expansion should reproduce. We examine
several aspects of Regge-pole-theory fits to forward
elastic scattering data, including exchange degeneracy
and the crossover sects, and also study the nature of
the Pomeranchuk trajectory. For pion-nucleon forward
elastic data, we present a good fit to existing data using
I", p, and Pomeranchuk pole trajectories, all with
normal slope [i.e. , near 1.0 (GeV(c) '). The value for
the scale constant ss 1(n' 1 suggested by the
Veneziano formula is consistent with the forward data.

Apart from this treatment of the high-energy forward
elastic data, in Sec. II we also discuss the zeros in the
scattering amplitude at specific values of t and I
required in order to obtain the correct spin-parity
structure of the baryon resonance spectrum. From the
Veneziano expansion we subsequently extract a param-
etrization for the residue functions of the various
baryon trajectories. In general, the model suggests that

~ By "subsidiary" we mean either terms which do not contribute
to leading order asymptotically in one or more channels or those
which do not contribute to the residue of the lowest-lying physical
state on a given trajectory. We use the word "daughter" to denote
any state in a given resonance tower whose spin J is less than that
of the leading member. The term "exotic" denotes a meson state
whose quantum numbers cannot be generated via the quark
model as (qq); an exotic baryon is one for which (gqq) structure is
not possible.
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I. NOTATION AND TECHNICAL ASPECTS OF
VENEZIANO REPRESENTATION

FIG. 1. Scattering diagram for meson-baryon scattering;
s= (p+q)2 t= (p' —p)' I= (p' —q)2 where p (p') and q (q') are the
four-vectors ot the initial (final) baryon and meson, respectively.

the reduced residue is a polynomial in s'I .We determine
the corresponding residues from the published data on
elastic widths, and present curves showing this empirical
variation with mass. We believe that plots of this type
will also prove useful in other reactions for summarizing
the data and predicting the elastic widths of undis-
covered resonances.

In Sec. II D, we give results of a comprehensive fit to
all high-energy backward mE scattering data. Ke
employ the polynomial form for residues, suggested by
the Veneziano model, constraining them as much as
possible to reproduce the elastic widths of physical
states along the trajectories. Because it specifies the
residue structure of secondary trajectories, such as the
S~, the Veneziano approach allows us to go further than
previous fits to backward data.

Some explicit beta-function representations for
meson-baryon scattering are presented in Sec. III, and
there we analyze the extent to which they realize the
desiderata given in Secs. I and II. We concentrate on
the kaon-nucleon process, and compare several Vene-
ziano-type parametrizations with both scattering data
and resonance widths. One exciting feature not present
in traditional Regge fits is the possibility of representing
EE scattering data from threshold to infinity with the
same functional form.

In the final section, we summarize our conclusions.
The reader interested primarily in new phenomeno-

logical results is directed to Secs. II A, II D, and III.

In this section we define our notation, discuss the
choice of an appropriate set of amplitudes, and give a
general expansion for these amplitudes in terms of
Veneziano beta-function terms. Securing the ap-
propriate asymptotic behavior and spin structure of
the amplitudes imposes certain restrictions on the
terms in the expansions. Further limitations and rela-
tionships between terms arise from incorporating into
the representation general properties of meson-baryon
scattering such as signature for trajectories, positivity
of resonance widths, and absence of ghosts.

A. Notation

The kinematics of meson-baryon scattering are
relegated to Appendix A. With reference to Fig. 1, we
point out that the s and I channels are meson-baryon
channels, whereas the t-channel is a meson-meson
channel. The description of pseudoscalar-meson and
spin- —,'baryon scattering requires 2T independent
amplitudes, where T is the total number of distinct
(conserved) values of total isospin. In Sec. I 8 we will
elaborate somewhat on the alternative choices, but for
definiteness here we consider the standard invariant
amplitudes A i &(s, t,n) and 8& &(s,t,l), which are free of
kinematical singularities. The superscript (I) is an
isospin index. In the particular case of pion-nucleon
scattering, we may use the amplitudes A '+&(s, t,u) and
8&+&(s,t,N), which have the properties

A i+&(s,t,u) = &A t+&(u, t,s),

8&+&(s,t,u) = WB&+&(N, t,s),

and where the + (—) functions have pure isospin
I= 0 (1) in the t channel.

If we adopt, as have other researchers, the view that
a Veneziano-type representation should be established
for the A and 8 functions, then we have, in general,
expansions of the form

r (t—nsr(t))r(2&2 —n~(s))
A&'&(s, t, s&,) = Q Cg&'&(t 2&222 8 M) + Q Dg &'&(g,h, i,81,82)

&, m, ~, rr, sr r(n —nsr(t) —n~(s)) g,s, r, &1,&2

r(g — (s))r(ts — (I)) r(p — (t))r(q ——
(~))

E~&'&(p qr 8 M) (3)r(i —nB1($) nB2(Q)) ~ '1 " ~ ~ r (r—nsr(t) —n&s(n))

where n»r(t) denotes a particular meson trajectory and
ot&= o.&—2, with o.& being a baryon trajectory function.
Similar expansions are appropriate for B&r'(s,t,u). The
sums run independently over a11. meson trajectories M
and over all baryon trajectories 8, 81, and 82 ap-
propriate to the process being considered, as well as
over all integer values of t, 222, n, g, h, i, P, q, and r.

Restrictions upon and/or relationships between the
constants CA(I) C~(1) DA(I) D~( ) It A I', and E~(I)
arise from imposing certain physical requirements, such
as the following:

(a) No states with exotic quantum numbers, ' as, for
instance, 8=0, I=2 and 8= 1, S=1.
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(b) Absence of states with unphysical spin values;
this restricts the values of the integers l through r, as
discussed in Sec. I C.

(c) Appropriate spin-parity structure at the baryon
resonance positions Indi(s) =k, where k is an integerj
and at the meson pole values $nir(t) = k).

(d) Appropriate isospin structure at the baryon and
meson resonance positions.

(e) Signature properties.

The requirements (c)—(e) are in practice applied only
for the leading trajectories. Specifically, (d) establishes
algebraic relations between the coefficients for the differ-
ent isospin values, IWJ, within the sets (Cg,Cg' ),
(D~&ri D~&»), and {E~&r& E~&~&). Secondly, (e) relates
the constants C, D, and E, in pairs, for each isospin I.
Finally, (c) connects the two spin amplitudes A and
8, whereas all other requirements apply to A and 8
separately.

The situation is much simpler in certain meson-
baryon reactions where entire summations can be
eliminated. For example, in kaon-nucleon scattering,
because the E+p system has no known prominent
resonances, we want no terms involving nii(u) (let the
s channel correspond to EE scattering); therefore only
the terms of the first summation in Eq. (3) survive. On
the other hand, consider x 2+ ~~+2; since no I=2
rnesons are prominent, the 6rst and third summations
in Eq. (3) are eliminated, a priori

In pion-nucleon scattering, the symmetry property
given in Eqs. (1) and (2) can be directly employed to
relate the constants of the third summation of Eq. (3)
to those in the 6rst, and also to prescribe structure
within the second summation.

Later in this paper, when we discuss the spin-parity
structure of the baryon states, it will prove convenient
to use terms such as

I'(i' —n~(t) )r (m' —ceo(s) )
(oy3+C2$+C3)

I'(I' —n~('t) —no(S))
(4)

B. Choice of Amplitudes

Besides having the convenient crossing properties
listed in Eqs. (1) and (2), the invariant amplitudes

with c~, c2, and c3 constants. This form is not quite
that of a typical term in Eq. (3), but, assuming linear
trajectories, we can always rewrite it as a particular
linear combination of terms within a given summation
on the right-hand side of Eq. (3). A similar statement,
of course, applies to (s,u)-type terms.

The reader not familiar with the methods for ex-
tracting asymptotic behaviors and pole residues from
Eq. (3) is referred to earlier literature. We now state
our reasons for working with the invariant amplitudes
A and 8, rather than with some other set.

A &r&(s, t) and B&r&(s,t) have simple asymptotic behavior,
ass~ ~)

A s ~ atfixedt
at 6xed I ~

s~~ ' at fixed t
s~& at 6xed N.

(5)

Other properties one would like to establish include
positivity of pole residues, parity, and, more generally,
the proper t dependence of the amplitude demanded by
the observed spin-parity structure of the s-channel
resonances. All of these are simply described only in
terms of partial-wave amplitudes, and there is no full
amplitude which allows even a vaguely complete
treatment.

One might like to use the t-channel nonQip amplitude

A'=A+ 8,
4M(1 —&/4M')

whose imaginary part in the forward direction is
ImA'= pi,bo&,t and so is positive. Although this has
good crossing properties, the kinematic singularity at
t= 43'' would appear to be intolerable in the Veneziano
approach which exploits analyticity in all three chan-
nels. Similarly, A+(s u)B/4M r—educes to A' at t= 0,
but complicates the statement of Regge behavior at
fixed N. Finally, the s-channel non Qip amplitude
A+X~,b(s)B would allow quite a nice discussion of
positivity but does not have good s+-+ I crossing. This
difhculty with crossing is not important for writing
terms that have only s- and t-channel poles, for these
can be easily symmetrized by writing s ~ I terms for
the crossed amplitude (both in spin and isospin space);
e.g. , one writes (s,t) terms for A+X~,b(s)B and ~ P
elastic scattering, then adds (s,u) terms for A+Xi,b(u)B
for m+p scattering. The difhculty arises in the treatment
of beta-function terms containing both s- and u-channel
poles.

Finding no su%ciently signi6cant advantage in any
of these alternative choices of amplitudes, we present
the remainder of this discussion largely in terms of the
traditional A and 8 functions.

C. Structure of Veneziano Formula for A and 8
The expansion of the functions A &r&(s, i,u) and

B&r&(s,t,u) was given in Eq. (3). In this section, we will

specialize to pion-nucleon scattering for definiteness and
will elaborate somewhat on the properties of individual
terms in the expansions. As noted, the desired ampli-
tudes are expanded in a series of the form



TABLE I.I.owest values of the integers m, m, and 1 for the typical
term given in expression (6) of the text. Here, 8—M signifies that
the term in question contributes asymptotically to leading order
in both the s and the t channels (i.e. , as s ~(') in A and as s™lin 8
when s —+ ~ at fixed t, and as t~B in either A or 8 when t —+ ~ at
fixed s). The type (8—1)—M is asymptotic at fixed t, s —+ ~, but
down by 1/t for fixed s, t —+ ~ . The other terms of these types are
found by incrementing the listed m, m, andi by the same integer.
All terms of the (s,t) variety vanish exponentially for s —+ ~ at
fixed u. The (n, t) terms are handled similarly and, for mE scatter-
ing, prescribed from these (s,t) terms by crossing symmetry,
Eqs. (1) and (2).

Type
(s,t) terms

Baryon w Meson tt

8 amplitude

A amplitude

and similar terms with s replaced by u, and

I'(nt —ns g(s) )r (l —n~s(u) )
)

I'(n —ups(s) —
eL~s (u) )

(7)

where m, n, and l are integers and ng=o. ~—-,'. For the
baryon trajectories 8, we can take E, 6, or Ã~, and for
the mesonsiV, we have the exchange-degenerate P' and

p trajectories. Whereas this exchange degeneracy
(n, =np ) is not necessary if one considers only 7', it
is enforced by factorization and the absence of reso-
nances in m.+++ and Z+7r+ elastic scattering. In
particular, we cannot allow a rnultiplicative fixed pole
for the p so that, like the I", its residue function has a
zero at n, = 0 in both A and B.This restricts l in (6) to
be ~&1. There are no restrictions on the possible com-
binations of trajectories in a single term. Moreover, as
far as pion-nucleon scattering itself is concerned, the
Pomeranchuk trajectory (with anv slope) may be
treated on an equal footing with the p and E' tra-
jectories and thus included as a possible candidate for
nsI(t) in expression (6). However, in the 5U(3)-related
kaon-nucleon process, treating the Pomeranchukon in
this manner, without an exchange-degenerate partner,
would lead to the prediction of exotic resonances' in
the E+p system. " (The ela, stic widths of these exotic
states are fairly narrow, however, as we note in
Sec. III E.)

In Tables I and II, for the (s, t) and (s,u) terms,
respectively, we record the nature of the asymptotic
behavior associated with various sets of integers (t, ns, n).
We do this for only those terms which contribute
asymptotically to leading order in at least one channel.
In order to satisfy the limitations given in expression
(5) (and similar ones appropriate when u —+ ~), n&~nl,
and n&~ t in all terms; moreover, for the (s, t) and (u, t)

"Similar inclusion of the Pomeranchuk in 71-7t- scattering leads
to predicted resonances with isospin 2 as discussed in D. Y. Wong,
Phys. Rev. 181,1900 (1969),

terms in B(s,t,u), it is further necessary to have
n&~ns+1. These conditions are also required (but not
sufhcient) in assuring that the spin associated with a
particular pole be no greater than that of the ap-
propriate resonant state; to guarantee polynomial
residues, ns+t&~ n.

We note, in passing, that the absence of a physical
state at nq(s) =-,'does not prevent our using ns='0 in

(6) and (7) when dealing with that trajectory. Upon
taking the appropriate linear combination of (6) and

(7) required to obtain the correct signature, we will see
that the residue at nq(s) = -', is zero. Notice, however,
that the term with m= 0 couples nonasymptotically as
s~ ~ for t fixed in the 3 amplitude. However, only
that m=-0 term provides a large constant term in the
A~ residue function; we elaborate on the importance of
this in Sec. II C. For the SU(3)-symmetric kaon-
nucleon situation, there must be exchange degeneracy
(and thus no signature properties) for the baryon
trajectories if exotic EÃ resonances are to be avoided.
Thus, the absence of a J =-', V~* requires m~&1 for
the SU(3)-symmetric trajectory of 5s. Similar argu-
ments in ~S —+ EZ imply m&~ 1 for the 6& itself.

Beyond the restrictions of appropriate asymptotic
behavior and resonance angular-momentum properties
alluded to above, the other elementary constraints on
the selection of terms in Eqs. (3), (6), and (7) include
crossing symmetry, signature, positivity of resonance
widths, parity doubling, and isospin [or, more generally,
SU(3) structurej. It is possible to guarantee these

simply only for the leading trajectories in the repre-
sentation. We will now comment upon some technical
questions associated w'ith these desirable properties.

D. Signature

Obtaining signature for trajectories in the Veneziano
model is by no means natural. Both Igi and Virasoro, '
however, chose to impose signature in a manner which
strongly coupled the over-all contributions of the
various baryon trajectories. Specifically, in their solu-
tions, a term of the form

r (™»(s))I'(t —n»(u))
c

I'(t —nay(s) —aggs(u))

which contributes in leading order both as s ~ ~ at
fixed u and as u —+ ~ at Axed s, served to generate the
signature properties for both baryon trajectories o»i
and o.~~. Therefore, the multiplicative coupling strength
constant c enters into the definition of the residues of
both trajectories and thus, for example, would tend to
associate the pion-nucleon coupling constant g'/4~ to
Fq, the elastic width of the 1238 resonance, in too
restrictive a fashion. The asymptotic X and 6 exchange
amplitudes are also constrained to be of similar magni-
tude in this type of solution. A more realistic and less
t. catt ictive solution necessarily involves some ter~s
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which contribute to nonleading order in at least one
channel. As will be established in detail in Sec. II, these
subsidiary terms are also strongly suggested by other
features of the low-energy resonance structure.

E. Parity Doubling

A naive Veneziano formula for meson-baryon scatter-
ing generates parity-doubled trajectories. This is a
general feature of all theoretical models that enforce
analyticity at s= 0. If we cunningly adjust the constants

multiplying the subsidiary terms in Eq. (3), we may
abolish these parity-doubled states. This is possible for
the leading trajectories, but not for the lower-lying
trajectories, if one wishes to retain Regge asymptotic
behavior.

The partial waves of definite parity are given by
(let I=I——',)

Type

8—8
8—(8—1)

m(s)

0
0

(s,u) terms
t(N)

However, one even runs into trouble for the leading
trajectory in ~S, whereas this was quite trivial in the ~m.

case. The width of a resonance of spin j and mass Mg
on the leading trajectory is

TABLE II. Asymptotic properties of the (s,ri) terms, expression
(7) of the text, for the lowest values of rN, I, and /. These have the
same structure for A (s,t,u) and B(s,t,u) H. ere, B—B signifies that
the term contributes asymptotically to leading order both as
s —& ~ at fixed I and as I~ ~ at fixed s, e.g. , as s~&(") as s —+ ~,
for fixed N. The type 8—(8—1) is asymptotic at fixed s, I~ 00,
but down by 1/s for fixed u, s —& ~. For (s,u)-type terms, fixed-t
limits are exponentially vanishing. Other terms with the same
asymptotic properties as those listed are found by incrementing
the listed m, l, and e by the same integer.

C7.P+J 1 d'-E(Pi+i+Pi) (ft+fs) (15)
—(Pi—P~i)(fi —fs)j (9)

ds L(Pi+i+Pi)(fi+fs)

+(P,-P~,)(f,-f,)j. (1O)
Now, near t= 0,

Moreover,

Pi —Pi~i 1—s ~ t/s,

Pi+Pi+i 2

(11)

(12)

Sxs'f'
(fi+f,) =A+xi,b~-s M~'&,

23'
(13)

8~s&~2 EA
(f f ) — +~2I~x sr(s)i+UI&

2M M
(14)

Thus, since the integrals are presumably dominated

by the forward peak, the fi+ fs term dominates, whence

a,p+ a,~ . It follows that it is impossible not to
have some parity doubling, and so one can only consider
removing the doubling for the leading trajectories, with

l)s'" which eventually decouple from the cross
section. However, even this modest aim is not easy, and,
in practice, one puts zeros into the residue functions by
hand at the positions of the unwanted resonances.

F. Positivity

(1) A remarkable feature of the Veneziano form for
~~ scattering was that it gave positive widths for
essentially all resonances, if a reasonable intercept for
the p-meson trajectory was employed. " One might
expect a similar situation in meson-baryon scattering.

"Positivity in x~ scattering has been studied by J. Shapiro
(Ref. 2); F. Wagner, Xuovo Cimento 63A, 393 (1969);R. Oehme,
Xuovo Cimento Letters 1, 420 (1969); J. Yellin, University
of California Lawrence Radiation Laboratory Report Xo. UCRL-
18637 (unpublished).

s= 1 for 7.I' = —1

=2 fol A=+1,
and the leading trajectory residue is

g;= lim L(~ s —s)8~s"'f;/t' "'j.
g~MR2

I'(re —n, (s))I'(I—ns(t) )
I'(rt —ni(s) —ns(t))

(17)

It is evidently convenient to treat both parities
together, however, and to use, say, fi A+ (s't' —M——)B.
One considers then the poles for both positive and
negative values of s'~'. In this approach, positivity of
I'sr' implies that the residue must be positive (negative)
for s"' positive (negative). Therefore, because the
residues of the poles in 3 and 8 are functions of s and
not s"', we deduce that at a given pole the leading
power of s in the residue for 2 must be no higher than
for B. This requirement is not trivial because, in con-
structing the functions 3 and 8, the simplest choice for
the Ã trajectory to is make 8 s residue contribution a
constant, whereas A must be at least linear in s, if the
parity-partner state to the nucleon is to be abolished.
%e will illustrate this further with examples in Secs.
II C and III.

The situation is further complicated by the fact that
in nature, parity partners are evidently extinguished,
at least for the lower-lying recurrences.

(2) In order to gain further insight into the matter of

guaranteeing positivity for all baryon resonance states,
we review the xm situation more fully. "It is possible to
present a simple, if nonrigorous, argument leading to an

inequality which guarantees that all but a 6nite number
of states will have positive widths. One begins with a
single (s, t) Veneziano-type form, e.g. ,
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At the pole position Q.i(s) =m', the residue is the nucleon trajectory. The simplest form of these is

-where

( ] )m+n —l r(~+y)
r(m' —ni+1) r(y)

y= n2(t) —1+1

X=m'+t —n.

(18)

and

F (1—n~) I'(1—n p)

I'(1 n—~ n—,)
F(—a~)r(1 —np)

B=bA
F(1—n~ —n, )

The modulus of this function is syn1metric about
y= ——',(A —1).To avoid having a backward peak whose
magnitude is as large as that of the forward peak
(albeit with oscillating sign, as one moves up through
the successive s-channel resonances), the last zero of
(18), for y(0, must fall very near or outside the
physical-region boundary (u 0). This implies that

ni(0)+ n~(0)+ Z &n, (19)

I'(1—ag) I'(1—n p)
or

F(1—ng —n, )

I'( —ng) F(1—n, )

these will be seen~in/Sec. III to be reasonable as first
guesses. Unfortunately, there remain terms involving

where Z is the sum of the squares of the external masses.
In ~~ scattering, Z 0 and n&1 gives cx,(0)&0.5. In

mX scattering, the application of Eq. (19) is beclouded.
We really should use fi and f2 not A or B, to start
considering positivity, and even then necessary con-
ditions are dificult to find. Moreover, we should employ
SU'(3) symmetry to find reactions with exotic channels
so as to be able to apply Eq. (19) to (s,t) and (s,u) terms
separately.

We may continue to use Kq. (19) as a guide, re-
membering to use o.;=+&——,

' for baryons. Then the
inequality is less stringent than in m-x, because Z 1.80
not 0.08. However, one can draw the general conclusion
that for high-lying baryon trajectories such as 6&, we
can expect many Veneziano-type terms, whereas for
the lower-lying Ã~ we are restricted to fewer terms
in Kq. (3).

G. PCAC

Ademollo et a/. ' have made the interesting observation
that the PCAC condition plus the beta-function repre-
sentation imply the (approxima, tely valid) quantization
relations nq(0) —n~(0)=0.5 and nq'(0) =nN'(0). The
PCAC condition in, say, mE or xZ scattering, may be
stated as A'(s=M', t=0, p'=0)=0, where M is the
mass of the external baryon and p is the mass of the
external meson. (See Sec. I 8 for a de6nition of A'. )
Take, for simplicity, mE elastic scattering and treat
only the s tterms. (The neg-lect of s-u terms may be
justified by considering m Z+ —+ vr Z+.) Then the
quantization relation ensures that the 6 contribution
vanishes in the PCAC limit if we take for A either of
the forms

Then, if p'=0, the amplitude

Z= A+ [(s M')—/2M7B,

which is 2' at t= 0, takes the form

2M ~'(0)) r(1—~—,)

Choosing a~ ——b~/2Mn' achieves the PCAC result, but
at the cost of decoupling the nucleon trajectory entirely
from this amplitude. This violates both positivity (Z
must be positive at t= 0) and the desired isospin struc-
ture of the high-energy behavior in A'. On the other
hand, as we shall see in Sec. II B, the ratio Z(t= 0)/-
B(t= 0) is rather small [ 0.1 for the D13(1520)7, and
so indeed a~ b~/2Mn' to 10%. This does not seem
quite good enough; perhaps one should enforce the
PCAC result a&= b&/2Mn, ' exactly, and then add small
terms to Z of the form

I'(1—u~) I'(1—np)
Z = (ais+a, t+z3)

F(2—a~ —n, )

where s~, s~, and s3 are arranged so as to obtain the
PCAC vanishing along with a more satisfactory value
of Z at t=0 for the higher recurrences of the nucleon.
It is curious that whereas in ~x scattering, positivity
and PCAC seem to be correlated, a similarly naive beta-
function choice in mA' scattering only achieves PCAC
at the cost of violating positivity.

II. EMPIRICAL KNOWLEDGE OF
MESON-BARYON SCATTERING

To ascertain which particular linear combination of
beta-function terms should be written for A i+ (s,t,u)
and B&+'( t,su), we must first abstract from the data on
xE and EN scattering a certain salient structure for
these amplitudes, as a function of s and t separately. We
may then hope to build that structure into our choice
of terms. There are several noteworthy features as-
sociated with particular values of t. In Sec. II A we
focus upon the forward elastic scattering region in mlV

and EE processes. We stress the conclusions drawn
from present Regge-pole-theory fits both as to the
relative magnitudes of the various exchanges and as to
the structure in t of their residue functions. In the
process of our investigation, we refitted existing data
and, as a by-product, obtained a good fit to m-p elastic
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data using a normal-slope Pomeranchuk trajectory.
The remaining subsections deal with various aspects of
the baryon spectrum. Ke first discuss and tabulate the
zeros of the amplitudes at certain values of t and I
required in order to obtain the correct spin-parity
structure of the s-channel resonances. The corre-
spondence of the positions of these zeros with analogous
structure in differential cross sections is emphasized.
Next, from the general form of the Veneziano expansion,
we extract a formal parametrization for both the elastic
widths of the resonances on parent baryon trajectories
and the backward elastic scattering data. This leads to
the definition of a reduced residue function based on the
model. From the data we extract the empirical values
of the residue function and quantitatively examine in
the last subsection the adequacy of the Veneziano-model
parametrization of these baryon residues.

A"'&(s t) = a '
&'&(f)t& &'&(t)s "&"

8 ~ (s,f) = b ~ (f) gt'i (f)seto'

where p(') is the signature factor, given by

r&&'& = (1+rt'&e ' ""')/sin~nt'&,

(20)

and (i) labels the contribution of a given pole. The
functions a,'(f) and. b, '(f) are classical Regge-pole-model
residues whose structure is given in Sec. III A 1.

We have placed the scale factors so=1 as suggested

by the Veneziano formula when a trajectory has slope 1.
In this regard, it is certainly interesting to note that all
experimental data which call for a slope n'(0) = 1 indeed
have a t dependence consistent with the scale factor
$0—1. For general slope 0!', the Veneziano formula
predicts ss ——1/n'; but this value is certainly not con-
sistent with those data indicative of a trajectory slope
much less than 1. In particular, if one wishes to in-

corporate the Pomeranchuk trajectory into a Veneziano
form, as suggested by Kong, ' the experimental 3

dependence necessitates a trajectory slope of approxi-
mately unity. In this section, we will consider both
cases—one in which the Pomeranchuk trajectory has a

"See, e.g., Igi, Igi and Storrow, Inami, and Igi and Pretzl
(Ref. 6).

A. Properties of A(s, f,u) and 8(s,f,u) Following from
High-Energy Forward Scattering Data

In this section we present a review of the Regge-pole
description of mE and EE forward elastic scattering
and examine critically the status of various features of
the model fits. We take the usual model of I', I", co, p,
and A2 exchange, with the last four trajectories having
intercept rr(0) = 0.4 ~ 0.65 and slope n'(0) = 1. In the
exchange-degenerate limit described by the Veneziano
formula, these four poles have a common intercept and
slope. For definiteness, suppose the high-energy limit of
the amplitudes A' and 8 is

universal slope near 1.and the other in which it has a
very small slope.

1.Structure in t of Residues

For both cases, independent of the the Pomeranchuk-
trajectory properties, the data suggest a residue zero
at f= —0.2 (GeV/c)' in those nonflip amplitudes A'
associated with p, o&, and As quantum numbers Li.e.,
the corresponding a, '(f) are proportional to t+0.2).
The supporting evidence is the crossover feature in the
s.p, E'p, and pp elastic differential momentum-transfer
distributions. " In addition, a residue zero in the p
quantum-number Rip amplitude 8 at the point n,~0,
t~ —0.6 (GeV/c)' is prescribed by s.lV charge-exchange
data. "The I"and A2 residue functions for both A' and
8 must contain zeros at n& =0 and nz, =0, respectively,
to eliminate ghosts at those positions.

We now invoke the concept of exchange degeneracy
and conclude that (with ni ——n, = n~, ——n„) both A' and
8 should possess the residue zero at o.=0 for each
l-channel quantum number. In classical language, this
corresponds to the Regge poles choosing nonsense at
a=0. This n factor is, indeed, generated automatically
by the Veneziano approach, which suggests

(21)

with n'(f) and b(t) nonsingular.

The zero in A' at f= —0.2 (GeV/c)' is more con-
troversial. We consider first associating it with the
residue of each Regge pole. Via exchange degeneracy, the
observed o& zero at t= —0.2 (GeV/c)' suggests a similar
one in the I" amplitude. This provides the appealing
possibility that the Pomeranchuk trajectory can have
universal slope of approximately 1. The sign change in
the P'-Pomeranchukon interference term at t~ —0.2
(GeV/c)' will yield the observed lack of shrinkage in s.p
scattering. In Fig. 2(a), we demonstrate the fit achieved
to harp forward elastic scattering in this fashion. The
details of this fit are relegated to Appendix B; for
comparison, we present a standard" low-slope Pomer-
anchukon fit in Fig. 2(b). Moreover, it is also attractive
for duality reasons to associate the f~—0.2 (GeV/c)'
residue zero with the contributions of these poles. As
emphasized by Dolen, Horn, and Schmid3 and by
Dikmen, "the contributions of the prominent s-channel
resonances in s.p and Ep scattering vanish at t~ 0.2—
(GeV/c)' in the nonQip amplitude A' and. at f~ 06—.

"Typical Regge-pole fits incorporating the crossover e6'ect are
given in Reg. 14 for 2i-N and NN scattering and in G. V. Dass, C.
Michael, and R. J. N. Phillips LNucl. Phys. B9, 549 (1969)g for
the EN process. The e8ect is also considered using finite-energy
sum rules for p exchange by Dolen ei aL (Ref. 3) and for &o and A s

exchanges by C. Michael and G. Dass, Phys. Rev. 175, 1774
(1968), and references therein.

'4 W. Rarita, R. J. Riddell, C. B. Chiu, and R. J. N. Phillips,
Phys. Rev. 165, 1615 (1968)."F.N. Dikmen, Phys. Rev. Letters 22, 622 (1969).
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(GeV/c)' in the flip amplitude 8 (to be described in
Sec. II 8). According to reasoning similar to that of
Harari, therefore, the contributions of the t-channel
Regge poles, except for the Pomeranchukon, should
have the same zeros. "

Unfortunately, however, the above scheme is clearly
inconsistent with factorization. From the residue zero
in A' at l~ —0.2 (GeV/c)', one clerives a square-root
zero associated with all vertices EKM, irir3f, and ppM,
where HEI is the Regge pole exchanged. This in turn
implies an unobserved residue zero in the spin-Rip 8
amplitude also at t~ 0.2 (G—eV/c)'. Furthermore, the
requirement of exchange degeneracy itself forces an
unobserved zero in the p and m residue functions in 3'
at n=0, t 0 6(—GeV. /c)' "

To get around these difficulties, one must add
additional t-channel effects besides the Regge poles
listed above. There are two ways to do this, and the
diff erent methods suggest quite different t-channel
structure for Veneziano representations of EÃ and ~E
scattering. The first method is illustrated in Fig. 3(a).
If we continue to associate zeros at t~ 0 2(G—eV/. c)'
with the Regge-pole residues, as above, then some
secondary trajectory or cut mechanism must serve to
cancel the t~ —0.6 (GeV/c)' zero from A'. This way
out has the feature of retaining duality of leading
t-channel Regge poles with leading s-channel resonances,
and presumably the effect required could be quantita-
tively small. "To avoid the factorization-induced zero
in 8 at l~ —0.2 (GeV/c)', one must conclude tha, t it
is inappropriate to impose factorization on nonunitary
solutions, such as those of the Veneziano type. We will

say more about this later.
The second method for curing the difficulties requires

disassociating the t~ —0.2 zero from a single Regge-pole
residue altogether. It is illustrated in Fig. 3(b). The
leading Regge pole is presumed to have only the one
zero at 0.=0 in 3'. A secondary trajectory or cut"
having the same quantum numbers interferes with the
leading pole, and the zero of the effective amplitude is
moved to t~ 0.2 (GeV/c)'. —This remedy preserves
factorization of pole residues but disagrees with the
duality picture given above. However, it may be that
the duality argument was too simple. Inasmuch as it is
only the leading baryon resonances whose contributions
vanish at t~—0.2 (Gev/c)', one may imagine that if

the contributions of the entire degenerate Veneziano-
model tower of baryon resonances were included, then

"H. Harari, Phys. Rev. Letters 20, 1395 (1968).' It is interesting to note that the crossover effect is largest in

PP scattering. Baryon-baryon scattering is also known to violate
the simplest duality picture with no exotic resonances. These
effects are possibily connected.' Notice that the leading s-channel resonances do have zeros in
both A and 8 near t= —0.6 (GeV/c)', but the small difference in
the exact positions often suKces to move the zero in A' to a some-
what higher i/i value. See also the discussions in Secs. II B and
III E.' See the review article by C. B. Chiu, Rev. Mod. Phys. 41,
640 (1969).

- 0.2 .0.~
A

(b)

I"'iG. 3. Two possible "Born" Regge-pole structures in the ampli-
tude A' {solid line), with the dashed line representing the effective
result after secondary-trajectory or cut contributions have been
included so as to obtain agreement with nature. Situation (a) is
favored by duality and (b) by factorization. Two possibilities
exist for the (b) case at larger t; the second zero is suggested by
the spin-parity structure of s-channel resonances.

the duality zero would be moved out to t —0.6
(GeV/c)'. An altered form of duality between reso-
nances and Regge poles could thus be restored, although
the asymmetry between 2' and 8 seems inelegant.
Moreover, if we define "background" to be "experi-
ment" minus the contributions of leading trajectories,
we see that this background would not have the
Pomeranchuk quantum numbers, as conjectured by
Harari "

The discussion of the above few paragraphs pertained
to a view of data in which the Pomeranchuk trajectory
has a near-normal slope of approximately unity. The
standard fit of Rarita et a/. '4 concluded that a smaller
slope 0(~ o,~'~( 0.3 is preferred. This alternative allows—
indeed, somewhat prefers —the P' trajectory to vanish
at larger it ~.

For instance, Barger and Phillips" have suggested
an extra zero a,t t —0.6 (GeV/c)'. Thus, in the model
in which the P has normal slope, 3' for the P' has
residue zeros at t = —0.2 and —0.6 (GeV/c)'; the models
in which P has a small slope lead to a rough coincidence
of the two zeros at t= —0.6 (GeV/c)'. This version is
now not (obviously) inconsistent with factorization for
the P', but, nevertheless, the low-slope Pomeranchukon
model does not cure the l= —0.2 (GeV/c)' factorization
difficulties connected with the other quantum numbers.

Z. Numerical Values of Residues at t= 0

We now turn to a discussion of the numerical values
of the residues which we should try to reproduce with
our Veneziano parametrization. Having discussed the t

variation above, we need consider only the values at
t== 0. One may also hope that the effects of cuts will be
at their smallest there. The values of u' may be deter-

' V. Barger and R. J. N. Phillips, Phys. Rev. Letters 20, 564
(1968).
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TABLE III. Values of the coefficients o.(') from the optical-
theorem expression appropriate to the various elastic amplitudes;
with s in GeV~, ot,& in millibarns is given by —0.38932r Z; o.&')7-&')

Xfs~&'& ' j/1(a~(i)) T. he index (i) labels the Regge poles I', I",
co, p, and A&, v. ~'& denotes the signature, and ct. (i) is the trajectory
intercept at t=p. In meson-baryon scattering, 0&'&=2Ma'(') at
t =0. LSee Eil. (21) of the text for the definition of o'.g In Tables
III(A)—III (C), the intercepts of the last four poles were fixed to be
equal, and only the coefficients o &'& were varied. The quantities in
Table III (D) were obtained by allowing the intercepts to vary
also. The xm on the four fits was 298, 231, 242, and 198, respec-
tively, on 231 data points. Data on oi,i and on the ratio Re/Im
of the t=p amplitude were used. ' The p and A2 couplings to SX
are not listed because they are very poorly determined. The mm-

couplings for p and p' have been determined by factorization
arguments. Table III (E) presents the value of the ratio b/a' at
t =0, where li and g' are defined in Eq. (20) of the text.

-Inter- fr(s)

Po]e cept m P —+m=P E. P —+E P Pp —+PP 7r+~ ~2r+m

p
pf

P
A2

p
p/

P
A2

p
pf

P
Ag

p
pl

P
A2

0.99
p 4.

0.4
p4
p4

1.0
0.5
0.5
0.5
0.5

1.0
0.6
0.6
0.6
0.6

1.01
0.59
0.43
0.59
0.40

—19.4—33.3
0.0

10.1
0.0

—17.2—28.9
0.0
6.1
0.0

—25.6
0.0
39
0.0

—15.2—25.9
0.0
41
0.0

Pole

(A)

—14.8
21.3

6.2

(&)
—14.1

I205
12.8
3.7—2.6

(C)
—12.7—10.5

8.0
2.3—1.7

(D)
—12.7—12.2

17.7
2.4

—33.3—75.2
65.4

—30.1—54.8
39.4

—Z7. 1—41.2
24.0

—26.0—52.9
55.4

~ ~ ~

fi/o'

—11.3—14.7
0.0

0.0

—9.77—15.2
0.0

0.0

—81—16.0
0.0

0.0

—8.9—12.7
0.0

0.0

p, p', or
Ag or p

0.0 ~ 3.0
15.0 ~ 30.0

& A. Citron et al. , Phys. Rev. 144, 1101 (1966);W. Galbraith et al. , ibzd.
138, B913 (1965); K. J. Foley et al. , Phys. Rev. Letters 19, 193 (1967);
19, 622(E) (1967); 19, 330 (1967); 19, 857 (1967); A. N. Diddens et al. ,
Phys. Rev. 132, 2721 (1963);D. V. Bugg et al. , ibz2d. 146, 980 {1966);G.
Bellettini et al. , Phys. Letters 14, 164 (1965);19, 705 (1966);M. N. Kriesler
et al. , Phys. Rev. Letters 20, 468 (1968).

2' V. Barger, in Proceedings of the ToPical Conference on High-
Energy Collisions of Hadrons, CERlV, Geneva, 196$ (Scienti6c
Information Service, Geneva, 1968).

mined best from data on (Tt,t,21 and the errors estimated
from varying the intercepts over the range n(0) = 0.4-0.6.
The values of 5 for p and A2 exchange are determined
from hts to xX and EÃ charge-exchange data, which
are dominated by the 8 amplitude; errors may be
estimated from varying the parametrization of a' and
from the effect of different methods of achieving the
nonzero polarization in xÃ charge exchange. The values
of 5 for the I" and co are essentially undetermined by

the high-energy fits and are known only through the
use of finite-energy sum rules (FESR).""

We list numerical values in Table HI for the zS and

&Ã couplings, with our estimates of the errors. Our

isospin conventions are given in Appendix A.
We note, in passing, that the reduced residue of the

Pomeranchukon is not particularly different from that
of the I".There is also no explanation of the fact that
the ratio a'/rb for the F and P' is such that there is

little or no 71-Ã polarization from their interference.
These would not seem to be properties of two objects
which the low-slope (or fixed-pole/cut) F models claim

to be quite different entities.

3. Theoretical InterPrefa&i«

To summarize Sec. II A 1, we claim that there is

already disagreement between theory and experiment

and that a specific model, like the Veneziano form, can

only make things worse. In any case, one must put a
zero in the I",~, A2, and p residues in A and 8 at ~= 0.
We then have the two possibilities given below.

(u) Model of Fig 3(a). H. ere we arrange the values of

A and 8, for each pole, so that when A' is formed, the
zero at t= —0.2 (("eV/c)' will be generated. This, as
described in Sec. II A 1, is superficially consistent with

the s-channel resonances. The unobserved zero at —0.6
(("eV/c)' in A' for p and oi is deemed to be filled in by
cuts. Similarly, the factorization crisis predicted by this

model —a double zero at —0.2 in pp and pp scattering
rather than the desired single on- is cynically swept
aside by not considering baryon-baryon reactions.

Again, it may simply be that one should not try to
enforce factorization in the narrow-resonance approxi-
mation, which violates explicit unitarity. This may be
an important conclusion both for the problem of con-

structing Veneziano forms for more general amplitudes

and also for dynamical attempts to generate the Regge
poles associated by duality with the s-channel reso-

nances. Finally, we note that Mandelstam's quark
model generates extra trajectories of the same inter-

cept as the customary p, m, A&, and I", and it may be
that these explain the lack of factorization observed

for 3&0. We consider this extra-trajectory model in

Sec. III but find it unattractive.
Having constructed. the above solution, we can now

allow exotic resonances, as does Wong, " and add. the
Pomeranchukon with slope 1.0. One amusing possi-

bility is that there is a limit in which the Pomeranchukon
is exchange-degenerate with a trajectory of
quantum numbers (perhaps one of the extra, trajectories
mentioned above in connection with factorization
breakdown) and that unitarity forces nr (0) up to I,
breaking the exchange degeneracy.

'~V. Barger and R. J. N. Phillips, Phys. Letters 26&, 730
(1968);I .J. Qilman, H. Harari, and Y. Zarmi, Phys. Rev. Letters
21, 323 (1968);H. Harari and Y. Zarmi, Weizmann Report, 1969
(unpublished) .
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TABLE IV. Positions of the zeros in the amplitudes A, 8, and A' prescribed by the angular functions associated with the va»«s
resonant states. All values are in units of (GeV/c)'. (A) gives the values of t at the zero positions in s1V elastic scat«ring; (&) gives
the same for J N elastic scattering; (C) gives the values of I at the zero positions in ~X elastic scattering.

I'„(1236)
D (16so)
z„(195o)
F35(1910)

37(938)
D)3 (1518)
j,:(16ss}
Gir(2190)

—0.44
—0.56
—0.52
—0.6

—0.44
—0.4
—0.61

—1.65
—1.45
—1.48

—0.99
—17

—2.63

—2.69

2,31
2.69
2.88

—0.4
—0.35
—0.51

(A)

—0.66
—0.63
—0.52

0 94
—1.53

—1.6
—1.39

—2.58

4.73
434
4.16

0.04
—0.17
—0.14
—0.2

—0.11
—0.28
—0.26
—0.2

—0.64
—0.64
—0.98

A'

—1.0
—1.11
—0.94

—1.16
—2.06

—1.93
—1,71

—2.92

Pia (1385)
Dir (1765)
Fg7(2030)

~(iii6)
Do (152O)
J 05(1815)
Gor (2100)

P33 (1236}
DI5(1680)
Far(1950)
J.„(1910)

X(938)
o„(1518)
J „(1688}
GI7(2190)

—0.38
—0.45
—0.48

—0.12
—0.35
—0.43

0.71
0.64
0.66

—0.06
—0.07
—0.31

—1.53
—1.33

—0.87
—1.2

—0.45
—0.52
—0.26

—0.66
—1.3

—2.54

—1.91

—1.44
—1.14

—2.39

2,37
2.72
2.89

—0.12
—0.31
—0.37

—0.35
—0.37
—0.35

—0.09
—0.11
—0.42

—0.51
—0.58

—0.84
—1.1

(C)

1033
—1.22

—0.7
—1.47

—1.45

—1.85

—20
—3.7
—4.84

—2.48

4.67
4.32
4.15

0.36
—0.05
—0.13
—0.15

0.38
0.01

—0.04
—0.02

0.88
0.14
0.1

—0.08

0.06
—0.22
—0.23

—0.18
—0.57
—0.71

—0.73
—0.S5
—0.8

—0.33
—0.42
—0.94

—0.79
—1.0

—1.03
—1.48

—1.71
—1.53

—0.92
—2.01

—1.76

—2.09

—4.46
—5.35
—6.13

—2.8

(b) ~ode& of Iiig 3(&). H. ere, one would not try to as-
sociate the 1= —0.2 (GeV/c)' zero with Regge poles. We
remember that it is only the higher-spin members of a
baryon tower that have this zero. Then, cuts (absorption
effects) will tend to suppress the lower partial waves,
leaving the higher partial waves, and hence the —0.2
zero, more pronounced in the real world than in the
Veneziano limit. We will find in Sec. III that most
simple series of beta functions correspond to this
possibility and not to (a). As we can see from the values
of a'/vb in Table III, if a and b are constant in 1 (as is
true in the simplest Veneziano parametrization), then

only for the p and As will the very small ratio a'/vb lead
to the —0.2 zero: here, coming from the 43'' —t factor
in the definition of a',

a'= a+ 2Mb/(43f ' t) . —

Any correspondence between the crossover zero and
the s-channel resonances is reduced to the level of an
accident: The resonances have a zero at t= —0.2
(GeV/c)' in A+vB/2M (=A' at t=0) whose asymp-
totic limit a+b/2M would have no zero for constant

g apd $.

B. Baryon Spectrum and t Dependence
of A and 8 at Resonance Pole

Perhaps owing to our more detailed knowledge from

phase shifts, the baryon spectrum appears to be more

complicated than that of the mesons. We must consider
both the internal symmetry (SUs or SUs) and the spin-

parity structure of these resonances.

1. Exchange Degeneracy —Internal Symmetry

Many authors have considered the consequences of
exchange degeneracy. " In KX scattering, there is a
rather exact degeneracy between the I=0 SU3 partners
of the E and the Ã~ and between the I= 1 SU3 partners
of the 6 and the D» ("parity partner of the nucleon's

first recurrence"). Such a degeneracy is, of course, a
minimum prerequisite for the successful application of
the Veneziano form to KX scattering, but also suggests

that we should treat the JV/X7 and the 6/Drs pairs of

trajectories symmetrically in other SU3-related re-

actions (such as vrlV scattering itself) where the mass

degeneracy is not apparent. Similarly, ~Z scattering

s3 C. Schmid, Nuovo Cimento Letters 1, 165 (1969).
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A A'

TABLE V. Values of the contributions at t= 0 to the amplitudes
A, 8, and A' of the same resonances listed in Table IV. The
normalization is arbitrarily adjusted such that aL, =+1 (or —1
if the state is below threshold); nL, ~ is dered in Eq. (A5): (A)
~X elastic scattering; (8) EE elastic scattering.

—0.6, —1.6, . ~ . The a~5 has a similar zero structure,
supporting its classification as exchange-degenerate
with the A. The zeros for t&0 can be obtained from the
F '(+n, ) = 0 factor in the Veneziano form, whereas the
t 2.5 zero in 8, crucial in ensuring, as experimentally
observed, that the 6 have no daughter, must be ex-
plicitly put in by hand, i.e., by writing

P„(1236)
D15(1680)
F„(1950)
F„(1910)

177
275
468

—358

—429
—204
—238

309

33
67

104
76

r(l' —n, (t))r(m —c g(s))
(1—2.5) .

r (n' —Q.,(t) —ag(s))

X(938)
D„(1518)
F16(1688)
617(2190)

0
—226
—400
—551

+1210
358
448
322

—13
41
68

117

P13(1385)
D„(1765)
F„(2030)

A(1116)
D03(1520)
F05(1815)
Goy(2100)

305
352
529

—24
—728
—509
—662

—808
—265
—263

+132
1218
503
442

—37
71

109

—15
41
73

113

conta, ins two channels x Z+~x Z+ and vr 2+~ x+2,
which have only s-t and s-I terms, respectively. Here,
exchange degeneracy is required in the Veneziano
approach, but in nature it does not appear to be quite
as precise as in KE scattering.

Z. Spin Purity Struc-ture

As emphasized by Harari'4 and by Mandelstam, ' the
nonrelativistic quark model appears to predict the
observed states very well. The S wave (56, 0+), the
P wave (70, 1 ), and D wave (56, 2+) are evident.
Furthermore, there is a radial excitation, another
(56, 0+). Unfortunately, such a structure is manifestly
inconsistent with any simple model that incorporates
analyticity at N=O: Ma, cDowell symmetry predicts
unobserved parity-doubled states for the leading tra-
jectory. Similarly, the theoretical and experimental
structure of the daughters will be in disagreement. We
do not know of any fundamental solution to this
problem, but will instead adopt a phenomenological
approach.

Dolen, Horn, and Schmid' emphasized the correlation
between the zeros of the t-channel Regge-pole residues
and those of the s-channel resonance contributions. In
Table IV, for some of the low-lying resonances in ~E
and EE scattering, we give the t and u positions of the
zeros of A, A', and B. We observe that all three show
interesting systematic effects. The 6 trajectory has
zeros in A at t —0.6, —1.6, - . and in 8 at t 2.5,

24 H. Harari, in Proceedings of the Fourteenth International Con-
ference on High-E&nergy Physics, Vienna, 1068 (CERN, Geneva,
1968), p. 195,

The nucleon and E~ contributions seem consistent
with just the zeros from LF(n, )j '. One may investigate
the zero structure in various SU3-related reactions to
see if they change according to the precise value of the
intercept of the t-channel pole. In 7rX —+ EA (or ~ EZ),
for instance, the zero at t —0.6 moves to —0.4,
which correlates with a break in the high-energy cross
section at this value and suggests a value of nrc*(0) 0.4
[E*(890)or E*(1400)$.

The approximate matching of the zeros of the
Veneziano form and those of the experimentally prom-
inent resonances eliminates unobserved daughters of

'

large width. However, one still must ensure that A and
8 (and hence A') have the right relative magnitude. We
thus list in Table V the relative values of A, 8, and A'
at t=0 for our resonances. We note that A' is often
much smaller than A or 8, and this goes hand in hand
with the celebrated "crossover" zero in A' near t —0.2,
discussed in the previous section. The over-all magni-
tude (i.e., width) of the resonance is best handled by
the plots in Sec. II C.

Finally, we remark on the systema, ties of the I zeros
which are useful for constructing s-I terms. The 6
family has, in 8, one scurrilous zero at a I value corre-
sponding to the f 2.5 zero, in addition to the regular
family at n —0.4, —1.4, The latter are presum-
ably associated with some linear combination of zeros
from I' '(+a~), F '(+n~, ), and F '( —1+cxq). The
existence of more than one n-channel trajectory clearly
complicates the problem. The 6 family in A has the
same zs —0.4, —1.4 series, plus another single zero at
u 0.7, approximately the nucleon position. The as-
sociation of this zero with the nucleon is supported by a
similar analysis of ~Z elastic scattering, where the
corresponding zero becomes u 1.2 vs~ ~'. Such a
correlation implies a particular relation between the
SU3 mass splitting of the external and internal particles.

The nucleon family has the same structure in A and
8, with a rough zero sequence I —0.2, —1.2,

C. General Expression for Baryon Residue Functions

In this section we present the general parametriza, tion
for the elastic widths of resonances on the parent ba, ryon
trajectories and for the backward-angle differential cross
section, as prescribed by the Veneziano-model expansion
of the amplitudes. The parametrization is the product of
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an essentially kinematical fa,ctor times an energy-
dependent polynomial controlled by the constants
which multiply the various beta-function terms in the
Veneziano expansions (3). Less complete but similar
discussions were given previously by Amann' and
Uirasoro. ' We then treat the experimental data in
analogous fashion; after dividing empirical resonance
widths by the above-mentioned kinematical factor, we

present the resulting reduced widths as a function of
resonance mass. The energy dependence of this reduced
residue function, coupled with information on the
residue culled from backward-scattering data, should
enable one to judge how many terms are required in the
polynomial, and thus to estimate the complexity re-
quired in a Veneziano parametrization of meson-baryon
scattering.

We begin by extracting from Eq. (3) only those terms
which contribute to the widths of resonances on the
general baryon pa, rent trajectory n/)(u); the required
terms are those from the second summation with g=i
and those from the third with P= r We n. ote that this
set of terms also supplies the leading Regge behavior
s B( '/' for large s at fixed u. Denoting this part of the

amplitude A('), we have

we derive

=II(J+k —t), 1&V&J—' (26)

and b denotes the slope of the trajectory, ns(u)
=nl)(0)+ bu. Note that one may express c,s in terms of

Ms, using J=n/)(0)+bMs'.
After employing the formulas of Appendix A, one

obtains the elastic widths of the two parity states at a
given J:

1,~(»= ~(P„aM)I (J)q")(+Ms), (27)

where the essentially kinematic fa,ctor is given by

b J 3/2(4 2) J—1/2P( J+1)
g(1)~ P.I &/s(s)—

(Ms' —u) I'('2 J)

X Q c,zP+ ~"'+(—1)' "'~ ."'] (23)
q~& J—&/2

where
cqJ ——1, q=0

=0, q& J—-',

g (r)— (4b) ~—3/'I'(J+32)
&(J)= gc.m.

~M si'(2 J+2)q=0 12 ~ ~ ~

'r( '(Ms) = Q c~s
q~& J—&/2

and
I'(p —n/(I (t))I'((J—ns (u) )

X Q ~~"'(p, g,M)
M;It&) q I'(p —nag (t) —n/)(u) )

(28)

+ 2 D~")(W,&1)
B&;g& q

I'(a —n/) ~(s))l'(C —n'(u) )
X

I'(C —n//, (s) —n/) (u) )

For convenience in what follows, we define

0,„(1&= (—1)& g Eg")(p,(JM),
3II; p& q

& "'=(—1)' 2 D~"'(g V»)
Blg&q

X{—(M —M)LS„(')+(—1)s "'S,."']
LO'Q~"'+( —1)' "'(&'9 "']) (29)

(22)
In Eq. (27), the + (—) sign is appropriate for states
with 7P = —1 (+1), where P is the parity of the state,
P= —(—1) .

For pion-nucleon scattering, employing Eq. (A14),
(23) one derives A„'+)=2A„( ' at the I= —', resonance poles

and 3„(+)= —3„( ' at the I= —', resonance poles.
Therefore, combining these results with the signature
requirement, one reduces Eq. (29) to

Similar quantities S«'~) and S„'I) are understood as
appropriate for the 8(»(s, t,u) amplitudes. We remind
the reader that the second summation in Eq. (22)
vanishes for kaon-nucleon scattering, whereas, in pion-
nucleon scattering, signature is obtained by imposing
8,~

'=~8„(",where +71 for 1V and r= —1 for
2V, and hg.

In the limit n))(u) ~ k= J—'„where J is the total
spin of the resonance, we again retain only terms con-
tributing to widths of resonances on the parent tra-
jectory and, after setting

Li'(0+1)]'
(bt)"- (2q 'zb)"- (4(t 'b)/' — —P (s)

I'(2k+1)

~(I)(M ) —3( 1)I+&/2I I+&( 1)s—&/&]

c, LO,, ' ' —(M —M)S, ' ']. (30)
q& J—1/2

For kaon-nucleon scattering, the absence of (s,u) terms
in the Veneziano expansion leads to the reduction

(r)(M~) =Q cqgLO', ,g(') —(Mg —M) S„("]. (31)

The constants 0', and in these equations are obviously
different for each trajectory considered; however, if one
wishes to fit simultaneously the resonance widths of all

trajectories in mÃ scattering, say, then definite con-
straints exist between the sets (O„S) for the different
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FzG. 4. Reduced residue function for the AII trajectory in AN
scattering. The quantity is defined in Eqs. (27) and (30) of the
text. The bracketed empirical values were extracted from listed
elastic widths (Ref. 25); the brackets show the spread determined
by varying the trajectory slope from 0.9 to 1.0 GeV ' and the
resonance position from 3II~+-,'I' t,t to M'g ——,'1"t,~, where Mg and
I't,~ are the tabulated (Ref. 25) resonance mass and total widths,
respectively. The X at I"2=0 denotes the value obtained from
m p backward elastic scattering fits (Ref. 27). The dashed curve
was obtained using Igi s parametrization (Ref. 6) of mN scattering
based upon the Veneziano model. The dot-dashed curve (cubic)
and the solid curve (ng=-', zero) result from the parametrizations
discussed in Sec. II D of the text, Eqs. (37) and (39), respectively.

trajectories, as can be seen by examining the connection
between Eqs. (3) and (22).

Some elementary deductions based on these expres-
sion relate to the positivity of widths. Because y& '(Mz)
and —y&r'( —M~) are proportional to the elastic widths
of the two parity states, respectively, at a given J, and
because, in the definition of y, cqJ Jq 3fJ'q for large
J, it is evident that to enforce positivity for both parity
states, then $«&0 if 0',«/0. Indeed, $«must grow
approximately as fast as 8«/MJ. The absence of

-3.5 - 2.5
I
. I

yg)lou 0
0 + /
tO e+
Mo+ lA/z e

-1.5
I

)
zo~ a

-05 "
I I

~0.5 15 ~~2.5 /u (Gev)

--2x10 --- Igi solution

Eq. {4P.)

- -3x 10

FIG. 5. Reduced residue function for the N trajectory in 7'
scattering. The description in the caption for Fig. 4 applies here
also. Two backward-scattering data points appear, reflecting the
sign uncertainty of the fits in Ref. 27. The dashed curve was
computed from Igi's parameters (Ref. 6); note that the parity-
partner states in his solution (I'"&0) will have negative elastic
widths. The solid curve displays the fit obtained in this paper, as
discussed in Sec. II D.

parity doubling for the nucleon is assured by setting
Ss, & ~=0 in Eq. (30) for that trajectory. To rigorously
eliminate parity doubling of the first states on the 6&

and S~ trajectories, one must impose the linear
relationships

g e„&-&=—(M&+M) Q 5i„t-~
q=0

1 1

g e„i—&=(MDrs —M) Q (II„' ',
q=0 q=0

respectively; however, the kinematical factor 8„—M
in Eq. (27) naturally makes the elastic widths of all

parity-partner states of the 6& trajectory small. In fact,
the elastic width of the A(1238) parity partner tends to
be two orders of magnitude smaller than that of the 6
itself, and so one may elect to relax rigorous elimination
for that trajectory. A similar argument applies to the
6's SU(3) partner Fr* in kaon-nucleon scattering. This
kinematic suppression may not be relevant, for we judge
that the Veneziano expression should be constructed so
as to 6t the invariant amplitudes and not the partial-
wave amplitudes. It is these latter which are most
subject to the possibly large unitarity effects not present
in the model.

The experimental widths of the known baryon tra-
jectories should provide a means for estimating the
number of terms required in the summations of Eqs.
(29)—(31). We have therefore computed the empirical
values for y (Mz) by inserting the known values"
of F,q for the left-hand side of Eq. (27). These are
shown for the X, 6, A, and Z trajectories in Figs. 4—9.
In obtaining the plotted values, we allowed the value of
the empirical resonance mass" to vary from M J 4Ft

'I' Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).

---3x IO
5

Fic. 6. Reduced residue function for the N~ trajectory. For the
purposes of this plot, the unobserved parity-partner states of the
G17 and 013 were assigned elastic widths equal to those of the
observed H'=+1 states. The meaning of the curves is the same
as for Fig. 5; see the caption of Fig. 4 for the definition of the
brackets.



~N AND ZS SCATTERI NG 2135

to MI+ sr I'&,& and the trajectory slope b, to run over the
range 0.9~& b&~ 1.0; this explains the brackets shown in
the figures.

Both parity states, where available, are given on the
same graph. We note the absence of candidates for
parity-doubled status with the Aq resonances. Ke sug-
gest that this absence of parity doubling, generally, may
well be a unitarity effect, especially strong for states near
threshold; higher along the trajectory, the MacDowell-
symmetry analyticity constraint should reassert itself,
and parity doubling would be restored.

The graphs indicate no dramatic structure in y(QI/2)

but certainly allow considerable Qexibility in possible
parametrizations. It appears that the sums in Eqs. (30)
and (31) can safely be terminated after two or three
terms. The systematic structure of the plots for the X
and E~ trajectories and, to a lesser extent, that for the
6 trajectory residue suggest that the experimentally
determined elastic widths for the high-spin objects on
these trajectories could be too small by as much an
error as a factor of 4. In this connection, it is significant
to recall that, in general, the determinations for elastic
widths obtained from backward-scattering data are
significantly larger than those derived from the for-
ward data. "

Backward-scattering (Q= 0) data points are also
given in the figures because the differential cross sections
for s —+ ~ at fixed u are also determined by the same
function, p. Indeed, as s —+ ao for fixed Q, Eq. (22)
becomes Lwith e, given by (26) after replacement of
J byn)

(b~) ae—1/2

cos2rns(Q) r (ns(Q)+-', )

ea [g,(1)+ie I see (I)] (32)

lO

600-
P t2

400--

n..
ct

/
H~ ~- /(n

200--

0.5 I.O I.5

~u (GeV)

2.0 2.5 3 0

Inami solution
— Solution {B)

Fzc. 8. Reduced residue function for the Zp-Zq exchange-
degenerate trajectory pair. The bracketed quantities are defined
in the caption to Fig. 4. Parity-partner states of the same elastic
width as the corresponding observed states (u.'/2)0) would have
values of y(tt'") (—10'. The bracketed values for the Pia(1385)
were found from SUS applied to the ~(1238). As discussed in the
text, the backward datum point is too uncertain to be placed on
the graph. The curves have the same meaning as those in Fig. 7.

In the pion-nucleon situation, upon forming f(QI/2)
and employing isospin and signature relations, one
derives

X2 P c«LR«(—) —(Q'/' —M)(B,(—)j. (34)

The isospin index I is the total isospin in the exchange
(Q) channel. The similarity to Eq. (30) is obvious and
shows how the reduced residue function parametrizes
both the widths of resonance spectrum and the back-
ward-scattering region in a uniform fashion.

rr(]+ire t«. e) (bs)ae '"
J(I) (Q 1/2)' '"( "'), (33)

2 cos2rnn(Q) I'(ns+-'2)
where

~(I)(Q1/2) 3( 1)I+1/2

~u (GeV)
—l.5
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FIG. 7. Reduced residue function for the A -A~ exchange-
degenerate trajectory pair. The bracketed quantities are defined
in the caption to Fig. 4. The backward datum point ()() comes
from Ref. 48; gsrr~'/42. was taken to be 14&3.The dashed curve
was computed using the solution given by Inami (Ref. 6), and the
solid curve using the parameters of our solution (II), given in
Sec. III D.

'6 See the detailed data-card listings in Ref. 25 for the various
determinations of the widths of the baryon states.

Fxo. 9. Reduced residue function for the Z -Z~ exchange-
degenerate trajectory pair. The bracketed quantities are defined
in the caption to Fig. 4. The data come from Ref. 25 and from
Armenteros et at LPhys. Letters 28B, 521 (1969)g;.gran)v2/42- was
taken to lie between 0 and 3.



For purposes of comparison, we point out that in
their phenomenological fits, Barger and Cline'7 have re-
tained only the factor (n r/+ ', )-(n a+ —

s) from I' '(~+ —', )
and used a parametrization

y& &(u"') =P(1/but ')(1/so)~// '"
with P and /5 constants. Similarly restricting the p(u'/s)
of Eq. (34) to terms at most linear in u'" for all tra-
jectories (i.e., q(1 in the sum) has, among other things,
the consequences of removing all E terms from
A(s, t,u), decoupling the As and /V~ trajectory terms at
s —+ ~ for fixed t, and thus forcing A to have the
asymptotically nonleading behavior s ~(" '. Because
all baryon trajectories must couple asymptotically at
1=0 (see Sec. II A), a, consistent solution thus requires

q~&1 and, therefore, residue functions at least cubic in
u'~'. The term with q==0 seems strongly demanded at
least for the 5 trajectory by the nearly linear form of the
resid e shown in Fig. 4.

The salient features of the parametrization given in
Eqs. (33) and (34) are the factor I' '(n//+-', ) and the
absence of any exponential type of form factor in u' '.
It is oI considerable importance to check whether this
latter feature is supportable experimentally because, if
correct, it provides the important possibility of extrap-
olating from the scattering region to distant poles.
Except for the well-known dip near o.~= —-'„ there is
little evidence experimentally for the differential cross-
section dips predicted by the factor I' '(n//+-', ); in

particular, the absence of the asserted dip near n~= —-,'
has been the cause of some consternation for standard
Regge-pole-theory fits. ' "However, it should be noted
that all but the n& ———

~ dip occur at fairly large values
of u, where secondary-trajectory or cut mechanisms are
presumably important.

Ke have attempted to test whether the Veneziano
parametrizations for the resonance widths on a given
parent trajectory and for that portion of do/du attribut-
able to the trajectory are consistent. This is discussed
in the following subsection.

D. Pion-Nucleon Backward Scattering
and Resonance Wdiths

In general, the Regge-pole model asserts the intimate
connection between the baryon resonances (u) 0) and
the baryon exchange amplitude in the region of back-
ward scattering (u(0). This connection is established
via, the trajectory function n(ut/') and its reduced
residue function y(u"'). However, classical Regge-
model fits to either the backward- or the forward-angle
scattering data could never be extrapolated reliably to
the poles at u or t& 0 because of the essentially arbitrary
nature of the residue function. The Veneziano model, by
specifying both the I' t(&x+1) factor and the scale

27 V. Barger and D. Cline, Phys. Rev. 155, 1792 (1967); Phys.
Rev. Letters 19, 1504 (1967);21, 392 (1968);21, 1132(E) (1968)."E. Paschos, Phys. Rev. Letters 21, 1855 (1968).

factor so, provides a general prescription for pole extrap-
olation. Hence, it' becomes important to test this recipe
in those cases where we know both the values of the
physical pole residues and the details of the scattering
data controlled by the corresponding Regge trajectory.
In this section, we examine the success of the Veneziano-
model prescription for the 6, N, and S7 trajectories in
mX scattering. This examination is only a limited test of
the model in the sense that the forward-angle data are
ignored for the time being, as are the relationships
which must exist between the constants appearing in the
residue functions for the different baryon trajectories.
If reasonable agreement with the baryon residue func-
tion aspect is achieved, these other problems couM be
attacked subsequently.

Restricting ourselves to reduced residue functions
with only four parameters, e.g. , rewriting Eq. (34) as

(ul/2) t/ + t/ ul/s+ c u+ d us/s (3$)

we find that our best solution in the case of the Aq

trajectory yields a 6(1238) width too small by afacto, r

of 2. For the S and S~ situations, the problem is much
less constrained, and we can achieve solutions in agree-
ment with both backward data and baryon resonance
widths.

1. 6 Residue

%e begin by discussing the A~ because it is pre-
sumably the sole contributor to m. p backward scatter-
ing and because several resonance widths are well

determined, as shown in Fig. 4. Many difficulties have
been encountered in previous Regge-pole-theory fits" "
to m p data; these include the anomalously small value
of the cross section at u=0, the absence of a dip near
e~= —~, discussed in the previous section, and the
considerable discrepancy with respect to pole extrap-
olation. To these, we would add another uncertainty:
We have extracted an effective trajectory for the
available ~ p backward data"; this is displayed in

Fig. 10. The effective trajectory appears to deviate
substantially, for u( —0.2 (GeV/c)', from the linear

form with slope near unity, expected from drawing a
line through the A~ resonance spectrum. Nevertheless,
we sought a fit to the m p backward elastic data using
the full Regge-pole formulation and a 6& trajectory of

variable slope. Retaining only data having u& —0.75

(GeV/c)', we found. that the X' values did not signifi-

cantly change as the slope was varied over the range

~'K. Igi, S. Matsuda, Y. Oyanagi, and H. Sato, Phys. Rev.
Letters 21, 580 (1968)."C.B. Chiu and 1. Stack, Phys. Rev. 153, 1575 (1967).

"The data we used are, for ~~p backward elastic, C. T. Coffin
et al. , Phys. Rev. 159, 1169 (1967);J. Orear et al. , ibid. 152, 1162
(1966); S. W. Kormanyos et al, , Phys. Rev. Letters 16, 709
{1966);J. Orear et al. , ibid. 21, 389 {1968);W. F. Baker et al. ,
Phys. Letters 288, 291 (1968); E. W. Anderson et al. , Phys. Rev.
Letters 20, 1529 (1968);for vr p —+ ~'n, R. C. Chase et al. , ibid. 22,
1137 (1969); V. Kistiakowsky et al. , ibid. 22, 618 (1969); J.
Schneider et al. , in Proceedings of the Fourteenth International Con-
ference on High-Energy Physics, Uienna, 1968 (CERN, Geneva,
1968).
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0.3—1.0 (GeV/c) '. The A& trajectory is evidently
poorly specified from the backward data. (We note that
the systematic errors quoted on the experimental data"
are rather large. In our analysis, we have allowed for
this feature, assuming it to be an effect independent of
N. Because this systematic error feature is as important
to the process of obtaining a good fit as is the variation
of the 6 trajectory slope, we feel that shrinkage (or its
absence) in the data is yet to be demonstrated. ]

The very small size of the s. p cross section in the
backward direction provides the essential constraint iri

the problem of finding a suitable ya(m'~'). These data in
fact require that both ya and dye/d(u'ts) near N=O
be tao orders of magnitude smaller than the appropriate
pole value, ya(1.238 GeV). That the derivative must be
so small can be appreciated by examining Eq. (A10)
near the backward direction for large s:do/du~ ~A'~'

+~ sin'8 ~B~ ', where 8 is the direct-channel center-of-
mass scattering angle. Because the variation of do./du
away from cosg= —1 is slight, ~B~ cannot be large.
However, the contributions of the 8 amplitude to
p(u"'), Eq. (34), enter multiplied by the factor u'" —3I,
and so the magnitude of 8 near I= 0 is essentially the
derivative dye/du' ' there.

In order to proceed, we appropriated a 6 trajectory
linear in I, passing through the resonance positions
(slope =0.9), and sought forms for yq(u'") which would

yield sensible agreement with both the backward-angle
s. p data and the reduced residues in the resonance
region. Although a residue of the form ae+ bnu'~' would
seem acceptable from a first glance at Fig. 4, it is rul. ed
out by the considerations of the previous paragraph.
Igi used a quadratic form ar, +ban'"+carr, for the
residue', a curve computed with his parameters is
show on Fig. 4. His width for the A(1238) is a factor of
4 too small, as he noted, but his fit to the backward s. P
data is most unacceptable (X'=5 &&10'), except at u= 0,
because of his large 8 amplitude. (See also Sec. I D on
this point. ) A quadratic solution also has the dis-

advantage of giving negative widths for parity-partner
states, as we have noted earlier. We adopted, therefore,
a four-parameter form of the type given in Eq. (35) and
converged on the following compromise:

nr, 0.09+0.9u——, (38)

ya ——(nr, ', )[35—2—+56.Ou.
+ (u"' —3l) (29.4+35.8u) $. (39)

For this case, the X' on 82 s. p backward data points
is 150, and the 6(1238) width is =60 MeV. "We also

05-- e-
d)

p Backward: 8 b, Trajectory

7r p Backward: o (Nz N y 6)

0.2 —0.2 —0.4 -0,6--
(

HH
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points" is 246. A plot of this function is also given on
Fig. 4; the general agreement with the empirical
residues is qualitatively not unreasonable, but the X'
for the backward fit seems much too large.

Moreover, from the theoretical point of view, this
solution is not particularly appealing because it gives
no evidence for a zero at eg=~. As we remarked in
Sec. I C, because there is no observed state at J =- —,

' on
the exchange-degenerate Zp-Z& trajectory, a Veneziano
parametrization for EE scattering may have terms
with the factor I'(m —nr*) only if m&~ 1; consequently
the I'~* residue function will contain the factor o;y-* —~.
Via SU(3)-symmetry arguments, therefore, the
reduced residue might also be expected to have, as a
factor, the term o.q ——,'. Alternatively, the absence of
strangeness + 1 baryon states implies exchange degener-

acy of the s- and t-channel exchanges in mE —+EX,
which suggests more directly, therefore, that the
oq —

2 factor is appropriate in the 6 reduced residue.
These arguments provide theoretical support for the
ad hoc suggestion made by Igi et al. that there should be
such a wrong-signature nonsense zero. "

Without increasing the number of free parameters,
we may consider solutions in which the zero at nz= ~ is
imposed a priori In our be.st four-parameter fit of this

type, we settled upon

na (u"') = —0.02+0.9u, (36)

ya(u"') = 27.3+51.7u+ (I'~' 3I)(27 2+34—5u) . (.37).
The h(1238) elastic width is 53 MeV, =45%%uq of its
experimental value, "and X' on 82 s P backward data

'~ The elastic widths have been calculated in this paper by using
the narrow-resonance approximation, as indicated in Appendix A.
This is possibly a bad idea for the n(1238). One should probably
reduce the quoted empirical value of 0.120 GeV by about 30%
before making comparison with the theory. This factor can be
estimated by calculating the integral over the experimental
I=J= 2 discontinuity PA. Donnachie, R. G. Kirsopp, and C.
Lovelace, Phys. Letters268, 161 (1968)] from threshold up to,
say, s=M&'+1 GeV'. This is indeed some 30'P& lower than the
corresponding value from the narrow-resonance approximation.
When making comparisons in this paper, we used the 0.120-GeV
value.

—I.O--

-l.5--

I'zo. 10. Values of the effective a in 71-+p backward scattering,
obtained from fitting da/du, at various I values, to the form
A(s —/)' e« '. The systematic normalization errors on the data
were taken into account, as described in Sec. II D. We can only be
ashamed of the ridiculously small error bars on n, «, which react
the customary inapplicability of the normal laws of statistics to
high-energy data. If, as might be true in 7f=p backward scattering,
the data are dominated by a single u I -dependent trajectory, cx ff
measures &Le.(I"')+a(—I"')j=Ren(e'"),
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present a plot of this particular residue solution in
Fig. 4; although the agreement with the backward data
and the 5(1238) width is fairly good, the presence of
the nz ——' factor causes the residue to grow too rapidly
at large ~u"'~. It may also be noted that the rather
large coefficients of the terms in Eq. (39) proportional
to I and to I"' indicate no systematic tendency for
subsidiary terms in the Veneziano expansion to be
small. Moreover, we call attention to the fact that even
with the era=+is zero factored out, the small value of

yg at 1=0 is achieved through substantial cancellation
between the contributions of the A and 8 amplitudes.

Finally, we examined also a six-parameter residue
structure, keeping terms up to I'~' in the 6's residue
parametrization, but releasing the zero at era ——+ ,'. This-
6t can lead to an estimate of the size of terms in the 6
residue which are nonvanishing at ez=-,'and thereby
measure to what extent the underlying symmetry
discussed above is re6ected in the mN situation. The
qualitative features of such a solution are very similar
to those of the solution given in Eqs. (38) and (39), viz. ,

a reasonably good fit to the backward-scattering data
and an elastic width of 80 MeV for the 6 are obtained,
but at the price of a residue function which produces
unreasonably large elastic widths for the higher recur-
rences along the trajectory.

Some physical arguments may be advanced to explain
away these difBculties with the 6 residue. Ke list them
and consider each briefly in this paragraph. (1) The
small cross section at N=O may be associated with a
vanishing of the residue function near the backward
direction"; as we noted, our solution, Eq. (36), is
indicative of cancellation which reduces the residue
from its natural size near u=0. Absorption effects" (in
the s channel) are asserted to be large for such vanishing
residue functions and could serve to significantly alter
the shape of the differential cross section for N(0. 35

(2) A 6 trajectory with a substantial term linear inI"' has been advanced by Paschos" and others. Such
a trajectory is not inconsistent with the Veneziano
model"; we tried it and found, however, that its use
does not lead to essential improvement over our pre-
ferred solutions, Eqs. (37) and (39). (3) The effects of
unitarity (in the u channel) might be substantial in the

"If the zero in y~(tt'ls) were at tt =0, before absorption etfects,
this could be interpreted as implying the assignment of Toiler
quantum number M = ~3 to the A.

34 J. D. Jackson, Rev. Mod. Phys. Bi, 484 (1965).
'~ Note that this statement is not inconsistent with the fact that

absorption effects are comparatively small for the E trajectory
and so leave the prediction of a dip near I= —0.2 (GeV/c)~
unaltered. Only the lowest partial waves are affected by cuts (or
absorption corrections). The 6 trajectory contribution, with its
relatively broad distribution da/du, will have much larger low
partial waves than the sharply backward-peaked Ã exchange
contribution.

"Trajectories of the form (Tfz(s) =u+bs+cs'l2, c&0, may be
easily accommodated in the Veneziano framework by simply
writing the terms I'(m —us(s) )I'(I—nM(t) )/I'(n —att(s) —asr(t) )
for the amplitude f1——A+(s"2—Af)&. The desired conditions
at the s- and the t-channel poles will be satisfied; however, the
discussion of the (s,tt) terms is less elegant.

partial wave containing the 6(1238) state, and thus play
a great role in determining the 6's width. It will be
recalled that the 1V/D model calculations of some years
ago, based on unitarity and analyticity, were able to
generate the A(1238) state successfully from crossed-
channel nucleon exchange. '~ To estimate this effect in
the Veneziano model, we employed the E-matrix
formalism" but found that the discontinuity generated
by the crossed-channel nucleon state is only 10'%%uo of
that due to the direct-channel 6 pole.

We summarize this study of the 6 residue function
by pointing out that the Veneziano parametrization
does not in fact provide a quantitatively acceptable
procedure for extrapolation from the backward-scatter-
ing region to the resonance poles on the 6 trajectory. '
Within the Veneziano framework. , the best solution
involves at least four parameters and yieMs typical
resonance widths a factor of 2 too small. There are two
plausible methods for resolving this discrepancy. First,
one may conceive that the Veneziano parametrization is
simply too naive. In particular, it may be judged that
the true residue function should explicitly vanish at all
parity-partner locations. However, in this regard, we
note that the parity-partner states in our solutions, for
mass &3.0 GeV, all have elastic widths less than 30%
of the experimentally observed 7I' = —1 states. Second,
it may well be that the size of the backward elastic
cross section is no true reAection of the 6 Regge-pole
residue function; we recall our previous comment on the
possibility of large absorption corrections. "

Z. N -N~ Residues

Achieving agreement with the N and N7 residue
data is much less difficult but also much less constrained.
It may be seen from comparing the data points in Figs.
5 and 6 that the N~'s residue function is expected to be
of similar size to that of the N . Therefore, the con-
tribution of the Nv to the backward mN data" will
differ typically from the N only in the intercept
[cr~ (0) c(ri0v)—+0 5, which. strongly favors the iV $
and the signature factor (which f'avors the X~ near
u=0). In our various fits to the data, we fixed the 6,
using parameters determined from the sr p fit, and

37 G. F. Chew, Phys. Rev. Letters 9, 233 (1962).
's F. Wagner [Nuovo Cimento 64A, 189 (1969)j has discussed

the E-matrix method. We remark that a simple Veneziano form
for mÃ scattering already contains the famous relation between
the X and 6 couplings following from the static model (Ref. 37).
This latter result, in the limit 3IIg =3f~, implies that the residues
of the E and 6 are equal and opposite in the amplitude 8&+),
at t =0. However, this is guaranteed by making 8&+) proportional
to (s-u) [see Eq. (46)g, which is indeed the simplest way of en-
suring that 8&+) is odd under s-I crossing."R. Amann (Ref. 6) claimed perfect agreement in pole extrap-
olation for the A. However, there is a factor of 471. missing from
his definition of resonance widths, so that his calculated widths
are in fact an order of magnitude too small."However, a quantitative examination of the effects of absorp-
tion is not encouraging in this regard. We thank Chris Quigg
(University of California Lawrence Radiation Laboratory) for
assistance with this calculation.
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In fits (i)—(iii), the X is clearly dominant, and the
three subsidiary trajectories 6, S~, and D» contribute
about equally. The various experiments" on ~E CKX
backward scattering are not notably consistent with
each other. However, they all seem to indicate that
there should be destructive interference between the
I„=-,'and the I„=~ contributions to the CEX reaction.
This feature is realized in fit (i), but not in fits (ii) and
(iii). The values of p(u"') at the resonance positions,
given in Figs. 5 and 6, were not an important constraint
in the fits; in particular, the E7 contribution is badly
determined.

We can try to limit the freedom in the fits by requiring
agreement with the trend of the s.+p polarization data
measured near 3 GeV/c. 4i In fits (ii) and (iii), the 6-1V
interference term gives positive polarization, which rises
to a maximum of approximately 1 near I= —0.1
(GeV/c) ' and then vanishes when n~ —0.5 L——at
I= —0.15 (GeV/c)'$. The Di5 addition in fit (iii) pro-
duces similar behavior. In fit (i), the 6 and N interfere
to give polarization of the opposite sign to that of fit
(ii). We present the result of a type-(i) fit, for which the
experimentally observed" positive polarization in
~+p~m+p near u=0 comes from the E X~ inter--
ference term.

The trajectories of the fit are

n~. (u) = —0.34+0.88u,

n~„(N) = —0.75+0.9u.

(40)

In terms of the four-parameter form given in Eq. (35),
the residue functions are

y~ (u't') = (104—184u)+ (I't' —M) (293+106u), (42)

y~, (n'") = (—131+21u)
+ (u"' —M) (—170+110N) . (43)

4~ We thank A. Yokosawa (Argonne National Laboratory) for
discussions of his preliminary m+p backward polarization data.

varied the residues of the T and S~ to obtain agree-
ment with the widths of Figs. 5 and 6 and the data on
both vr+p elastic and vr p charge exchange (CEX)."We
tried three types of fits:

(i) 6 fixed at parameters of Eqs. (36) and (37).
(ii) 6 fixed at parameters of Eqs. (38) and (39).

(iii) Like (ii) but with an added even-signature I„=—,

amplitude, having the same trajectory as the 6 and a
residue function fixed equal to 0.43 times that of the 6
given in Eqs. (38) and (39).This fit is motivated by the
exchange degeneracy which occurs in KX scattering
between the SU3 partners of the 6 and the Dib(1680).
The constant of proportionality, 0.43, is estimated from
Figs. 4 and 5. This type of fit would seem more sensible
than (i) and (ii), but rather depressing in that four
trajectories allow one far too many parameters with
which to fit the backward data.

These are plotted in Figs. 5 and 6. We note that the
ratio of the reduced residue of the S~ to that of the g
is smaller at N=O than it is in the resonance regionI"' —1.5 GeV.

Extracting a reliable parametrization for the sub-
sidiary X and D» trajectories will require more good
data. Specifically, we would suggest differential cross-
section and polarization measurements in all charge
configurations over a wide range of energies for lab
momenta greater than 5 GeV/c. Particularly crucial is
the matter of the correct relative normalization between
data of diferent energies.

Our values for the E„can be regarded only as
representative. Similarly, our skepticism of the funda-
mental nature of our fit prevents us from plotting any
of our predictions for (or fits to) the s X backward data.
(We will supply these to any interested reader and
discuss them in more detail in a subsequent paper. )

We close this section by underscoring the unfortunate
features of our best fit, represented in Eqs. (36), (37),
and (40)—(43). In addition to the unproved shrinkage
and poor Aq pole extrapolation in s. p backward elastic
scattering, the fit also indicates a marked violation of
even approximate exchange degeneracy. Specifically,
the A~ residue does not have the desired o,~= —', zero, and
the Ã~ residue function bears little resemblance to that
of the g .

III. EXPLICIT VENEZIANO-FUNCTION
PARAMETRIZATIONS

In this section, we derive and discuss several explicit
Veneziano-type representations for the pion-nucleon
and kaon-nucleon processes. We endeavor to incorporate
into these parametrizations both the general require-
ments of appropriate isospin, signature, positivity, and
spin-parity content discussed in Sec. I, as well as the
more specific structure emphasized in Sec. II.

A. X-N Scattering —First Approximation

We begin by treating EE scattering in the most
obvious manner. In this approximation, exotic reso-
nances are presumed absent, and thus we include no
strangeness +1 baryon trajectories in our functions.
Moreover, for the same reason, the i-channel meson
trajectories are taken in exchange-degenerate pairs as
are the s-channel KE trajectories. We deal, therefore,
only with Veneziano terms of the (s, t) type. This
problem is thus considerably more simple than the xX
situation (treated in Sec. III F), which demands, in
addition, (u, t)- and then (s,u)-type terms for signature
reasons. In this 6rst approximztion, we also do not
include the Pomeranchuk trajectory as a possible
t-channel exchange. To do so in LE scattering, without
accepting the price of exotic I-channel resonances,
wouM require installing the Pomeranchuk trajectory
as an exchange-degenerate object; this seems inap-
propriate. We return to the Pomeranchuk situation in
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Sec. III K, where we argue that there is no compelling
reason to leave it out of a Veneziano representation; in
fact, it can be associated directly with low-lying exotic
EÃ states. '

A good solution to EÃ scattering at this first level
was independently obtained by Inami'; we will first
motivate his result, discuss its properties, and then go
on to possible improvements. Our approach begins
with the results we established in Sec. II 8 relating to
the t dependence required of the A(s, t,m) and B(s,t, Iz)

functions if appropriate spin and parity is to be secured
for the s-channel resonances. Next, we note that the
t dependence of a single Veneziano form, Eq. (6), near a
pole ur(s) =m' is given by r(l —u2(t))/r(n —m' —u&(&)),

which has zeros for t values, u2(t) = I 1, ,-n—m'. In-
Table IV, the states on the A -A, trajectory are shown
to possess a structure of zeros in both A and 8, which
is roughly consistent with the prediction of a single
Veneziano beta-function expression. For the Zp-Z~ pair,
a similar statement is true for the A amplitude, but the
8 function requires an additional zero at 3 =2.3(GCV/c) '.

We are thus led to consider the following repre-
sentations:

5 -A~ I= 0 KE amplitude:

I '

(1—up —u ~)

I'( —ug) I'(1—u ()
8 &p&=h.

I(1 ug'u—,)—
Z~-Z~ I= 1 KÃ amplitude:

portional to A~~ is subsidiary because it does not
contribute in leading order as s —+ ~ for 3 fixed. It is
present simply to achieve the precise extermination of
the parity partner of the J~= zr+ A(1115); it is, in fact,
small and unimportant. The other subsidiary term is
that proportional to tp in 8('~. The tp —t term is indeed a
crucial factor in 8 because it leads to reversal of the
sign of the XIII term between large t Lwhere it is nor-
malized by the I'p(XII-Z~) widths] and the 3= 0 point,
where it contributes asymptotically to known high-
energy forward scattering. Terms proportional to
I'( —u„) are excluded because they would predict an
unobserved J~=-.', state, and no I'( —u, ) terms appear
for similar reasons. We remark, however, that in this
solution the reduced residue function for the A tra-
jectory is quadratic in u'~', and thus positivity cannot
be guaranteed for the elastic widths of both parity
states on the parent trajectory. 4'

The values of the constants appearing in Eq. (44)
may be established in various ways. We will present two
different approaches and then go on to a discussion of
the properties of the solutions. Inami's approach was
guided by the assertion that, in accordance with
Nature, certain residues should vanish. He chose to
abolish the 2 and ~+ states of the A. trajectory, the ~

state of the Z trajectory, and the —,
'+ daughter state of

the Z trajectory. This is accomplished essentially by
using the tp value listed in Table IV and determining
tllc Iatlos A~I/A III aIld ZAI/XIII floni. thc valllcs listed
in Table V for the —,

' and ~+ states of the A„-A~ and
Zp-Z~ trajectories, respectively. Inami then fixed his
two remaining parameters by adopting the high-energy
fitted values of A' at t=-0 in the two different isospin
states (see Table III). We denote his solution (I); in
units of A = c=-1 and GeV, it is

(44)

55.5,
Egg ———22.4,
us= —1.24+ s,

A~g ———24.4,
—9.8,
—0.9+s,

A~g= 138.7,
3p 2,3&

up= 05+t.
t solution (I)].

As noted, the isospin indices I in A &I' and 8 &~& denote
the total isospin value in the s-channel KiV system.
Crossing relations, which prescribe the u-channel EE
amplitudes in terms of the above, are given in Appendix
A. FOr nOtatiOnal COnVenienCe, We Write uIt uq(S)——
where A denotes the A -A~ exchange-degenerate tra-
jectory; u&-—-u&(s) ——,', where Z denotes the Zp-Z& pair;
and u& u, (t) =u~, (t) =——u (/) =uI (t). Our omission of
the Z -Z, trajectory from these formulas may be
justifi. ed by Fig. 9; the residue function has a quite
small magnitude when compared with that of A -A~

or Zp-Z).
We emphasize that Eq. (44) is essentially the simplest

one can devise for the EE process in that only two
terms of a subsidiary nature' appear. The term pro-

In order to illustrate the uncertainty present in even
this simplest parametrization, we present a second set
of values, denoted solution (I'):

h.~y = 48.0, A.g2 = —24.6, Agy = 117.5,
Zgy= —20 7, Egg= —24 2, tp-—— 0 62,

uq —1.15+——0.9s, uz —0.8+0-—-.9s,

u, = 0.55+0.9t [solution (I')].
4'Igi and Storrow (Ref. 6) also proposed a parametrization

similar to Inami's, except that they decoupled the Z p-Z& (YI*)
trajectory from contributing asymptotically to leading order in
the 8 amplitude. We have not seen the version in which this error
is corrected. In addition, we believe that their definition of
resonance widths is wrong for the higher recurrences on the
trajectories because it ignores the contributions from the 2
amplitude. A similar criticism applied to the widths dehned by
Igi and Pretzl (ReL 6).
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With this solution, the low-energy daughter' states
and parity-partner states are not abolished with quite
the same religious exactitude as in solution (I). How-
ever, according to &', a much better over-all fit, is
achieved to a collection of KS and EE scattering data
as well as to the widths of sundry parent- and daughter-
state resonance widths. Before presenting a critique of
these solutions, we list the relevant data against which
we judged the solutions.

B. XN Data Set

1. Resonance 8'idths

O

(9

J3
E

b

1,0—

0.5—

+
K p backward

1.61 GeV/c

CU

O

JQ
E

1.0
(c)

0. 1
—.

0.05—

-O, I 0. 0. 1 0.2 0.3 0.4

IO~; r +
K p backward

t.?9 GeV/c

1.0-

0.5-

0.5 -0.1 0 O. I 0.2 0.3 0.4 0.5

K p backward-

The empirical elastic widths of states on the parent
A -A~ and Zp-Z& trajectories were discussed in Sec. II D
and the reduced residue functions were extracted and
plotted in Figs. 7 and 8, respectively. We also assumed
that elastic widths of daughter' states are rather small
(&—,

' the size of the parent widths) but positive. In
some cases, widths of such states can in fact be esti-
mated by using the results of 7rS phase-shift analysis4'
and invoking SU(3) symmetry. The handling of the
daughter states in the model is, in general, a difficult
problem because certainly some of the lower-lying
embryo resonances in the Veneziano formulation will

acquire tota/ widths so large that they will never be
discerned empirically. Some of the interesting low-

lying states predicted by the quark model will be
discussed later.
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Pro. 11.&+p backward scattering (Ref. 46). The dashed curve
is solution (I},and the solid curve is solution (II},given in Sec.
III D. The dot-dashed line denotes solution (II), but calculated
with the usual Regge asymptotic approximation (proportional to
s "') in the A and 8 amplitudes (rather than the full Veneziano
formula). The data are at lab momenta of (a) 1.61, (b) 1.79, (c)
2.33, (d) 2.76, and (e) 5.2 GeV/c.

Z. Forward-Scattering Data

Some of the qualitative features of the high-energy
data were discussed in Sec. II A. The data which we

employed are explicitly

(i) E p ~K'n at 3.5 and 5—12.3 GeV/c, 44

(ii) E+n ~ E'p at 0.35—0.81, 0.86—1.36,
2.3 and 3.0 GeV/c. "

The E+n data are particularly interesting information
from the standpoint of a complete test of the model.
All of the applications of the model we have so far
discussed in this paper have involved comparing data
against a quantity extracted from the model via a
limiting procedure. This is necessary because of the
unitarity-violating zero-width aspect of the model
which places resonance poles directly on the real energy
axes. However, in the approximation to which we work,

4' A. Donnachie et al. (Ref. 32).
44 A. D. Brody and L. Lyons, Nuovo Cimento 4SA, 1027

(1966); P. Astbury et al. , Phys. I etters 23, 396 (1966).
4' W. Slater et al. , Phys. Rev. I etters 7, 378 (1961);A. Hirata

et al. , University of California Lawrence Radiation Laboratory
Report No UCRL-18322 (unpublished); CERN-Brussels-Munich
Collaboration, Phys. I etters 278, 603 (1968);I.Butterworth et al. ,
Phys. Rev. Letters 15, 734 (1965).We wish to thank G. Goldhaber
and A. Hirata for supplying us with the results of their latest
analysis of data from 0.86 to 1.36 GeV/c. However, our theory is
so rough that their preliminary data are sufhcient for general
conclusions; Fig. 13 displays the preliminary data.

there are no EE resonances and thus no poles in the
E+n channel above threshold. The full model, without
limiting operations, may therefore be used in E+n
scattering and applied even at quite low energies. The
omission of a Pomeranchuk trajectory from our for-
malism requires that comparison of the Veneziano form
be restricted to the CEX process, however.

3. E+p Backtcard Scattering

The data included are distributions from exposures
at 0.99—2.45, 2.76, 3.53, 3.55, 5.2, and 6.9 GeV/c. "
Actually, we estimate that it is not reliable to use such
data below 1.3 GeV/c because the effects of the ne-
glected t-channel Pomeranchuk trajectory may be im-
portant. The statements made in Sec. III B Z about a
complete test of the model apply here also, of course.

4. ES Scattering Lengths

We use the values4~ 0 and —1.47 in the I„=O and
1 EX states, respectively. There are not very important
data, since the I&=0 combination may be affected quite

"A. S. Carroll et al. , Phys. Rev. Letters 21, 1282 (1968); G. S.
Abrams et al. , ibid. 21, 1407 (1968); D. Cline et al. , ibid. 19, 675
(1967);J. Banaigs et al. , Nucl. Phys. 89, 640 (1969);W. F. Baker
et al. (Ref. 31)."S.Goldhaber et at. , Phys. Rev. Letters 9, 135 (1962); B. J.
Stenger et at. , Phys. Rev. 134, 81111 (1964).
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Fzo. 12. E p —+ IC'n scattering (Ref. 44). The data are at lab
momenta of (a) 7.1 and (b) 12.3 GeV/c. The curves are defined in
the caption for Fig. 11.

signi6cantly by the Pomeranchukon, whereas the It,= 1

part is already implied by the low-energy E+n CEX
data, 0.35—0.81 (GeV/c)', from which it was in fact
extracted.

C. Critique of Solutions (I) and (I')

Having determined the constants in his parametriza-
tion as discussed above, Inami found that his expression

(I) produced good agreement with both E p CEX data
and E+p backward-scattering data, as reproduced in

Figs. 11 and 12. In this section, we discuss the signih-

cance of these verified predictions and also comment

upon the value given by his solution for the elastic
widths and scattering lengths.

We begin with the E p —i E'e result. Given the va, lue

of A', asymptotically, a good fit to the E pCEX data—

will be obtained once one speci6es, in addition, the
approximately correct value for the ratio A'/i B at, f= 0.
This was done when the correct spin-parity structure of
the low-energy spectrum was imposed. We argue below
that the success achieved in the 6t is therefore not a
triumph for the particular Ueneziano formulation, but
is a practically expected result of a wide class of models
which embody a duality of resonances and Regge poles.
To make this more quantitative, we 6rst focus on some
general features of the duality of resonances and Regge
poles, well known from FESR results. ' Both of the
s-channel trajectories Zp-Zs and h„-A~ (or, for that
matter, X, E~, and. b, in the iriV situation) are as-
sociated with large values of the 8 amplitude and a
small ratio A'/vB. In Table V, this is shown to be the
case for the high-spin members of each resonance tower.
Any Veneziano form which does not contain daughter
states with huge widths must exhibit this feature, and,
indeed, as we noted, the ratio conditions were imposed
in each of the s-channel isospin states when the param-
eters of solution (I) were derived. The signs of the
amplitudes are also such that the A. -A~ and the Z~-Z&

terms interfere constructively in forming the 8 ampli-
tude with t-channel isospin I&= 1 but destructively in

I,=O. The well-determined high-energy value of A' at

TABLE VI. Partial-wave analysis of the resonance tower, under
the F17(2030), for two of the solutions presented for ElV scattering
in Sec. III. The kinematic factors have been evaluated at the pole
position predicted by the theoretical trajectories. Listed isr., (MeV).

Solution (I)
7 P+ 7-P

Solution (II)
7P+ gp

0.5
1.5
2.5
3.5

15.7 8.9
2.7 8.3—0.3 9.0
0.2 8.9

21.0—18.3
5.7
2.2

52.5—5.9
5.0

29.9

48 V. Barger, Phys. Rev. 179, 1371 (1959).

t=O served to normalize solution (I), and values for
B(Ii= 1) and B(Ii=0) were deduced.

The B(I&=0) n-umber is small, owing to the cancel-
lations, but is essentially undetermined experimentally.
The major testable prediction is that for B(I,=1),
which is supported. However, as this discussion indi-
cates, essentially the same prediction would come from
any model imposing duality and normalizing to A'. The
only surprising aspect is that the precise numerical
values Inami uses produce uncannily good agreement
with the 3=0 values of Table III (E).

Upon examining the l dependences of solutions (I)
and (I'), we find that A, B, and A '(Ii= 0) are essentially
constant, subject to the expected n&= —n zeros, whereas
A'(Ii= 1) has the sought-for crossover zero at t= —0.25
(GeV/c)s. These effects are also expected because, as
explained in Sec. II, any roughly constant A and 8
will generate the crossover zero in A'(I, = 1) but not in
A'(1, =0), simply as a consequence of the 1 l/4M'—
tactor )see Eq. A11)$ and the appropriate magnitude
of A'/vB at t= 0. As noted, this latter quantity is small
for the I&=1 amplitude but of order unity for I~=0.
The absence of a crossover zero in A' (oi exchange)
implies that solutions (I) and (I') will poorly reproduce
the empirical value of the difference do/dt(E+p ela, stic)—da/dt(E pelastic) .—

The predictions of solution (I) for the reduced residue
functions of the baryon trajectories are given in Figs.
/ and 8. The baryon widths for both (I) and (I') are a
factor of 2—3 times too small in comparison with the
empirical values.

The fit which Inami achieved to the backward E+P
scattering data, Fig. 11, is a free prediction and is
reasonably good, but this may be a Quke. From Fig. 7,
one may note that Inami's value for the A -A~ residue
is approximately a factor of 2 smaller than that obtained
by Barger" from a classical Regge-model ht to the data.
The difference can be attributed to the very different
size of the Zp-Z~ contribution between the two cases. In
fact, solution (I) gives a value for the Zp-Zs residue
which is an order of magnitude larger than the value
estimated from applying SU(3) arguments, at fixed u,
to the known 6~ m.S coupling at u=0. Whereas the
Z trajectorv was neglected by Barger, 4' it is quite
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important in the parametrization of solution (I).
The resolution of this question awaits reliable high-
energy backward-scattering data for X+n ~ Xpp or
E+n —+ E+e. However, a preliminary answer is possible
inasmuch as the full Veneziano formula can be used to
study low-energy X+n CEX data, which extend to the
backward angles. Solution (I) is seen to give much too
small a cross section, whereas a phenomenological
model, normalized to the backward X+p data and using
a smaller Z contribution, is in better agreement with
the data. In particular, when we tried to extend our
parametrization beyond that of Eq. (44), we found good
solutions with a very small 2 contribution at N=O.
However, our best solutions did not exhibit this feature.

%e notice from Fig. 13 that the ht to the X+n CEX
data is generally rather poor. At low energies, the
theory predicts more 5 wave and less I' wave than is
indicated by the data. The presence of the large I'-wave
component of the data may be identi6ed with rapid
variation of the amplitude produced by the nearby
baryon poles. The residues of these poles are too small
in both (I) and (I'). In the next section, solutions will

be considered whose residues at the nearby poles agree
better with experiment, and a larger P-wave component
will be generated.

D. Improved Veneziano Parametrization of EN

%e gain some inkling as to the source of the de-
ficiencies of solution (I) by examining the results of a
partial-wave analysis of the various resonance poles.
Table VI is a presentation of the widths of the members
of the resonance tower associated with the Fi7(2030)
state of the Zp-Z& family. The widths are pleasantly
positive, except for the ~+ state, which has a small
negative width. On reQection, this latter feature is
curious because the —,'+ state is the 5U3 partner of the
experimentally observed" Fpp(1910), which, in turn, is
a member of the tower associated with the Fp7(1950),
correspondingly the partner of the Fiv(2030). Moreover,
these states, parents, and daughters are classified
successfully by the quark modei2' in the (56,2+) repre-
sentation. Both the reasonably large elastic widths in
mX Lr,&(Fpp)/r. i(Fp7) 0.5, which, via SU(3), implies
the same ratio in E1Vj and the theoretical association
with the quark model suggest that we should seek a
solution with reasonable properties for this ~+ state.
Similar considerations relate the ~+ daughter of the
Dip(1770) state in KN to the corresponding SU(3)
partners Dip(1675), Dip(1730), and Dpp(1670) in 7'.

From Tables IV and V may be noted the amusing
fact that the F» destructively interferes with its parent
F37 in both the 2 and 8 amplitudes. This fact would
enable one to increase the size of the Ji37 width without
sacrificing the desired high-energy limiting values of A

and B.In particular, the Fpp+Fp7 combination does not
necessarily have the effective zero at the canonical
t= 2.3 (GeV/c)' position in the 8 amplitude; the addi-
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FIG. 13.E+I~ E'P scattering (Ref. 45). The theoretical curves
have not been corrected for any deuterium effects. We have not
plotted the experimental points near the forward direction, where
such corrections are dominant. The data are at lab momenta of
(a) 0.35, (b) 0.53, (c) 0.64, (d) 0.97, (e) 1.36, and (f) 3 GeV/c. Only
at 3 GeU have deuterium corrections been applied to the experi-
mental points. The curves are described in the caption for Fig. j.j..
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tion of the P3; moves it to smaller t. For this reason, the
simple solution (I) is suspect in that the zero at /= 2.3
(GeV/c)' is present unaltered in the high-energy limit.

Ke can try similar arguments for states on the
h. -A.~ trajectory, but there are no obvious quark.
daughters for the Fpp(1690). One evident discrepancy
in (I) is that the A -A~ residue function is quadratic in
g'1', implying necessarily negative widths for all the
parity-partner states above a critical mass value.

Based upon such thoughts, plus some trial and error,
from our Pandora's box of possible extra Veneziano
forms, we select a few that are particularly helpful.
These are in addition to those in Eq. (44):

A -A~ EE I=0 amplitude:
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K p elastic at 10GeV/c (x) ". K p elastic 9.8 GeV/c
and 9.7t GeV/c

IO=
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b
O.OI
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t
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I.4 I.2 I.O 0.8 0.6 0.4 0,2 I.2 1.0 0.8 0.6 0.4 0.2
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Fzo. 14. It+p elastic scattering (Ref. Sil: (a) E p scattering
data at 9.71 and 10 GeV/c; (b) E+p at 9.8 GeV/c. Both curves
give the theoretical predictions for E p (dashed line) and E+p
(solid line) scattering (at 9.85 GeV/c) obtained from super-
imposing a Pomeranchukon onto solution (II) as described in
Sec. III D.

A computer search was performed to find the set of
constants which would best fit the data set given in
Sec. III B. These values are

68.0, 4~2= —35.5 Agg —— 61.5,
A~~ ——254.2, A~~ ———33.8, AL;, = —90.9,
Zgi= —20.2 ) 2~2= —1.1 ) Zgg= —26.6 )

t() —— 0.64, 2~3= —3.4, 2~4= 3.6
Lsolution (II')),

Agg —— 57.6,
Egg= 256.9,
2~i ———45.0 (fixed),

to= 1.52 )

~~2= —37.3,
Ag2 ———50.2,

9.7,
—5.9,

A@g= 80.5,
Agg3 = —106.7,

—29.0,
&g4= 6.6

Lsolution (II)).
Solutions (I), (I'), (Il), and (II') a,ll yield quite

similar values of X' for the scattering data. In all cases,

with the same baryon and meson intercepts as in
solution (I').

We notice that this solution in the 2 segment is not
essentially different from (I'). We have also obtained
fits with a larger value of Z~t. The data on the Yi*(1385)
are not sufficiently precise to determine the size of 2»,
but when we study ~E scattering we 6nd that the solu-
tion analogous to (I') gives much too small a 6 width. A

typical fit with a larger I' t*(1385) coupling is

the major discrepancy between theory and experiment
is the E+e CEX data (Fig. 13) at the lowestmomentum,
0.35 GeV/c. The computer was unable to reproduce the
cancellation" necessary to yield a rather small S wave
at low energy. In Fig. 13(a), one may choose between
the devil and the deep blue sea. Fits (I) and (I') have
too small a P-wave component, whereas (II) and (II')
have a reasonable P-wave but a disastrously large
5-wave component (too large by a factor of 2 in the
amplitude). We tried many alternatives in an attempt
to improve the fit. The addition of various beta-function
terms to our amplitude, with small multiplicative coeffi-
cients, will, in fact, yield agreement with the 0.35-GeV/c
data. However, all of our fits which were successful at
0.35 GeV/c fell well below the data curves at higher
values of energy.

In Fig. 11, the (I) and (II) fits to the E+p backward
elastic data are presented. The quantitative agreement
between theory and experiment seems to get worse as
the energy increases. ' Figure 12 presents the fits to the
E p CEX data which are adequate.

The major difference (and claimed improvement)
between (I), (I') and (II), (II') lies in the va, lues of the
baryon residue functions, which are typically a factor
of 2 larger in the (II) and (II') fits. In Table VI, we
give the results of the partial-wave analyses of the
P$7(2 30)0tower. As rumored earlier in this subsection,
the residue of the Frs is positive in (II). This happy
state of affairs is in fact enjoyed by (I'), (II), and (II')
but not, as we said, by (I). In Figs. 7 and 8, we plot the
residue functions of the leading baryon trajectories for
solutions (I) and (II).

In Fig. 14, the deviations of our Veneziano-model
solutions from the elastic scattering data are illustrated.
To achieve a 6t to elastic data one must, of course,
include an appropriate Pomeranchuk-trajectory con-
tribution. We did this simply by parametrizing the
Pomeranchuk amplitude as in Eqs. (20) and (21) with
nr (&) =- 1+0.851 a(0) = 2.5, b(0) = —10.5, and with the
only t dependence of a(1) and b(t) specified by inserting
a Veneziano-type scale factor ss-——1/nr ' into the
formulas. The results of the addition of such a

"The cancellations are indeed large. For example, the term
proportional to Ag1 in Eq. (44) gives a contribution to the E+~
CEX differential cross section do. /dt, which is about 20 times
larger than the total theoretical curve.

~0 Pretzl and Igi (Ref. 6) attempted a residue analysis of back-
ward X+p scattering similar to the one we gave for m.E in Sec. II D.
However, because the data are rather sparse at high energies, they
are forced to use lower-energy data. They claim almost perfect
agreement, but several sobering comments are in order. First, we
demonstrated in Sec. II D that a good fit is not obtainable in the
)i- p situation where the data are much better and where the 6t is
far more constrained, because only one trajectory contributes. The
residue parametrization is also rather naive. It leads to parity-
partner states of negative elastic width on the A -A~ trajectory.
A parametrization as simple as the one they used in the Zz-Z& case
would give poor results for the SU(3)-related Ap-Aq. Second, the
asymptotic approximations they employ give results which di6er
by a factor of 2 from those obtained by using the full Veneziano
formalism at their lowest energy. In Sec. III, we always employed
the full form for E+p scattering.
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Pomeranchuk amplitude to solution (II') are given in
the figure; however, the other solutions have very
similar features. The difference between the experi-
mental values" of E+p and E p elastic scattering is
clearly not well reproduced. As we have remarked
before, such a failure is to be expected of any model
which does not possess the crossover zero in the
A'(I, =O) amplitude at t —0.2 (GeV/c)'. We should
hastily admit that the excellent fit to the 9.8-GeV/c
EC+p data is by no means representative; the high-slope
Pomeranchukon yields too much shrinkage. "

In conclusion, we may say that the results of fits
(II) and (II') are disappointing. We carried out a
rather extensive search, adding in turn many different
individual beta-function terms, and combinations
thereof, to our amplitudes in an effort to find a good
over-all fit. Our lack of success suggests to us that there
are substantial effects outside the scope of the model.
More specificially, for instance, as we noted, fits (I)
and (I') exhibited discrepancies, which are typically a
factor of 2 in magnitude. In our effort to achieve im-

provement, we determined solutions (II) and (II').
These two solutions do yield satisfactory agreement
with the magnitudes of resonance widths and certain
other quantities associated with the form of the ampli-
tude in its high-energy limit. However, they fail to
reproduce a (possibly) more subtle effect associated
with energy dependence. As we have remarked, the
model should fit the EE data over the whole energy
range, from threshold on up; but we were unable to
overcome discrepancies in over-all magnitude for the
E+n CEX data, and in t variation for the E+p back-
ward-scattering data, particularly in the 2.0—3.0-GeV/c
region. These features remained qualitatively invariant
when we added further Veneziano beta-function terms
to the set given in Eq. (45). Our lack of success in fitting
the E+p elastic data (after adding a Pomeranchuk tra-

jectory, and using the Veneziano-model relation
so ——1/n ) is also indicative of the presence of important
effects outside the framework of the model. "

E. General Deductions and Comments

1. Nonasymptotic Corrections, Cuts, and
Tz o-I'ru rectory Solutions

We wish to emphasize a rather alarming general
consequence of dealing with the amplitudes A and 8.
It is the nonAip amplitude A' which is the dominant
amplitude in determining experimental cross sections.
Not surprisingly, therefore, A' and 8, not A and 8, are
the amplitudes parametrized in classical Regge-pole-

"Figure 14 displays only representative data: for E+p, K. J.
Foley et a/. , Phys. Rev. Letters 11, 503 (1963); for E p, Aachen-
Berlin-CERN-London (I.C.)-Vienna Collaboration, Phys. Letters
248, 434 (1967);J. Orear et al. , ibid. 28, 61 {1968).

'2The shrinkage of the E+p elastic data suggests mph'=0. 5
GeV ', but then the relations so=1/ag' would not work.

theory fits. However, as we argued in Sec. II 3, A and
8 are the sensible amplitudes from the Veneziano-model
viewpoint. Moreover, A' is essentially the difference
between the two functions A and —8 whose magnitudes
are typically five times that of the resultant, A'. This
implies that, in our plebian approach at least, the
nonasymptotic terms in A' will inherit the typical size
of the coefficients in A, not that of the asymptotic
coeKcient in A'. For example, if we use the parameters
of solution (I), at SGeV/c inE p CEX, the effect of
employing the correct definition of A' rather than the

asymptotic form A' ~ A+sB/[2M(1 —t/43II')$ is a re-
duction of the cross section by some 40'Po in the forward
direction.

Recall, now, that it is A which exhibits the most
obvious violations of our or any simple Regge model.
For this is the infamous amplitude in which the cross-
over zero does or does not appear and which does not
exhibit the f= —0.6 (GeV/c)' zero in either E p, E+p
elastic, or the ~Ã and KE CEX amplitudes. Perhaps
the correct, but rather barren, deduction is that the
effects of cuts are small near t= 0 in A and 8, but can
become very important in the difference, A'. More
quantitatively, we call Sec. II to mind and the sugges-
tion from Mandlestam's model' that the leading meson
trajectories are doubled. "One need only suppose that
in the real world, for each t-channel quantum number,
A and 8 have effective intercepts which differ by 0.05
near t= 0 in order to generate effects in A' that simulate
the crossover effect over as wide a range of energies as
it has so far been experimentally verified. However, we
could find no reasonable model that gave this result
as well as the correct sign of the polarization in ~E
CEX.

We would like to stress, as a general comment, that
simple Regge theory should only be expected to hold
for certain amplitudes in which the duality-associated
resonances are large. This may be useful in understand-
ing why simple Regge theory is often an abysmal failure.

Z. I'omeranchuk Tra&ectory

As noted before, the Pomeranchukon was not ex-
plicitly included as a normal-slope trajectory function
in any of the Veneziano-function parametrizations dis-
cussed in this section. However, we did notice that it
may be associated, via duality, with the mysterious
bump in EE scattering observed by Cool et a/. '4; if
normalization is established by using the high-energy
cross-section data, then the elastic width of the possible
resonance, and its recurrences, may be deduced. These
values are not unreasonable.

More quantitatively, regarding the E+p channel as
the u channel, as usual, we suppose that terms appear

~' This may also be suggested by the splitting of the A 2

meson.
~4 R. L. Cool et al. , Phys. Rev. Letters 17, 102 (1966); see also

the discussion of the Z* effects in Ref. 25.
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in A and 8 having the form

I'(1—n, (u))I'(1 n—,(t))
A =a„—

I'(1 (u) — (t))

I'( — (u))l'(1 (t))

with n„(t) = 1+t. A complete treatment requires addi-
tional terms, of course, in order to achieve signature for
the Pomeranchuk trajectory and the elimination of the
j=0 daughter state at n„=1. However, because we

give this argument for illustrative purposes, we ignore
these considerations as well as those relating to possible

(s,u) terms.
The data (Table III) suggest that the real world lies

somewhere between the limits b„=13, u„=0 and 6„=7,
a„= —3. If we take n, = —3.6+u so that the bump
observed by Cool et al. has j=—'„ then its larger com-
ponent, the ~ state, has elastic width varying from 90
to 170 MeV, according to the two choices of b. However,
if we take n, = —2.6+u and the j=—,'+ assignment for
the bump of Cool et al. , then the elastic width varies
from 30 to 40 MeV. In this latter case, the daughters of
the bump of Cool et ul. have positive elastic widths of
similar size. In either case, the predicted elastic width
seems consistent with that suggested by a naive inter-
pretation of the data as a resonance.

In both cases the Pomeranchukon corresponds to a
shorter-range force than the P', the J= 2 case being one
unit lower in the j plane and the J=—,'two units lower
than the leading resonances associated with the P'.
Finally, although available X p backward elastic data"
are at much too low energy for a decisive test, they are
consistent with a Z*-exchange interpretation.

F. Veneziano-Function Parametrizations of
Pion-Nucleon Scattering

Our treatment of the pion-nucleon process will be
relatively brief because fewer detailed checks on the
model are possible in this process than were available
in the kaon-nucleon situation. This fact arises from a
combination of circumstances. On the one hand, because
all channels admit reasonance poles, there is much more
freedom in the choice of possible beta-function expres-
sions. Secondly, there are effectively less useful data
with which to test the model in the pion-nucleon case.
This latter handicap is also a result of the fact that
there are no m.Ã states with exotic quantum numbers.
The unitarity violation inherent in the zero-width model
precludes using the model exactly at small values of the
energy in any channel, as was possible in the K+n
CEX process discussed earlier. Effectively, therefore,
because we are not incorporating possible unitarization
schemes, our tests of the beta-function representations
can examine only their high-energy consequences, after
limiting procedures have been employed.

The major technical difficulty, but one which we shall
be able to sidestep, fortunately, is associated with the
(s,u)-type terms, given in the second summation of
Eq. (3). There are at least three baryon trajectories:
X,E7, and 6, and four if the Dr5(1680) is judged to lie
on a distinct trajectory. As a result, even if m, n, and l
are restricted to small values, there is a decidedly large
number of possible terms of the form

I'(zzz —nor(s) )I'(t —nsz(u))

I (rz —noz(s) —noz(u))

For example, if all terms with m, n, l= 0 or 1 are allowed
Lzrz, t &~n &~max(zzz, t)j, subject only to the requirements
of crossing symmetry and the restriction that m/0 and
n&0 for the 6, then 50 beta-function terms arise. These
are then subject to 12 constraints which arise from
abolishing the spin-2 poles" of the E and E~ from the
A amplitude and from guaranteeing appropriate isospin
properties in the various channels. Although the results
of Sec. II 8 and the values in Table IV (C) suggest that
certain of these terms are dominant, it is clear that 38
parameters is more than the number of data points
available for determining them. Furthermore, there is
reason to believe that the restriction to terms with m,
n, and l~& 1 is an implausible simplification. Consider,
for instance, the possibly mythical limit in which
o.~=n~.=o.~,=n~ —1 and imagine that

I'( — (s))I'( — (u) )
B~+& =c(s—u) r (—no(s) —ns(u) )

(46)

When these are reexpressed in the form of pure beta-
function terms, we obtain terms proportional to
I'(2 —nq(s)), for example, which were ignored in the
above count of 50 functions.

The above discussion emphasizes again the great
arbitrariness of the Veneziano type of expansion. No
strong a priori principles exist which could be employed
to choose between the various beta-function terms. The
only working criterion is that of fitting the available
information. Inasmuch as the tests of the model are
primarily in the high-energy domain, however, it is
possible to avoid altogether writing down explicitly any
terms of either the (s,u) or the (u, t) types. This simplifi-
cation arises from exploitation of crossing symmetry
and the experimentally observed signature property of
the meson and the baryon trajectories.

"The values in Table IV (C) suggest that terms like
F(—cv~ (s))F(—n~(u))/F( —n~ (s) —n~(N)) are important in the
amplitudes A and B.The nz(N) =0 pole in A is then canceled by
similar terms with u&~(s) replaced by uz(s) —1, for example.

Upon breaking the degeneracy, we discover terms
such as

I'(1—ng (s))I'(1—n~ (u) )
(s —u)

I'(2 —ng(s) —ng(u) )
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In particular, let us see explicitly how knowledge of
the (s,t) terms alone is sufficient for generating the
baryon residue functions and the high-energy behavior
of the amplitude near both t= 0 and u= 0. In the limit
s~ ~ for fixed t, the contributions of (s,u) terms
vanish exponentially, but

following:

(i) Nucleon terms:

r(1 —u&i) r(1—n~)
A, (+) —r»+ )r(1 —n~ —n&a)

r (m —

nil�(s)

)r (&p
—

n&iI (t))
r (I—n» (s) —ni&i(t) )

(—bs) ~&'&+"—'r(e —n (t)),

r( —— )r(1—„)
g~(+) =QT~~+

r(1———
(ii) X~ terms:

where b is the trajectory's slope. Crossing symmetry
requires that for each (s, t) term, we add (or subtract) an
identical term with s replaced by N. After doing so, and
taking the limit s —+ ~ at fixed t, we And that the
over-all result is equivalent to multiplying the right-
hand side of the above statement by the signature factor
1&e ' ~ for the meson trajectory. Next, consider the
situation near u=0 as s —+ ~. The (s, t) terms give an
exponentially vanishing contribution, but their required
(u, t) counterparts provide the limit

(bs) ~& &+" 'r(m —n»(N)).

The effect of adding the beta-function terms of the (s,u)
type, required to establish signature along the baryon
trajectory, is simply to multiply this limit by the baryon
signature factor 1&e '

In the remainder of this section, therefore, we will
write down explicitly only the (s, t) variety of terms
and model our discussion on that given for ES scatter-
ing earlier in this section.

Because we are not concerned in detail with the
daughter' structure in the model, isospin requirements
can be invoked to justify our writing down expansions
for the A'+) and 8(+) amplitudes only. We assert that
all terms containing a given s-channel trajectory must
satisfy exactly the isospin restriction demanded by the
states on the parent trajectory. For the E and X7
situations, therefore, for any given beta-function type
of term appearing in the expansion for A &+& (or 8&+&),

there must be an identical term in A& & (or Bi &). This
is true because we want no E or E~ poles to appear in
the s-channel isospin ~3 amplitude A, 't'=A(+) —A' ).
For the 6 trajectory case, there are two physically
meaningful alternatives:

(a) The 5 is a pure I= pp state. The relationship
A, 't'=A &+&+2A' & implies that the coefFicient of a
given beta-function term in A ' ' be equal to —0.5 that
in the A (+) amplitude.

(b) The isospin along the 6 trajectory alternates; the
odd-signature states have I= ~, whereas the even ones
have I= —,'.The 6rst even-signature, I= —,

' state would be
the Dip(1680). The desired isospin relation in this case
is A( )= —0.24A&+).

By analogy with solutions (I) and (I') given
for the kaon-nucleon situation, we considered the

r(1 ——,)r(1—.)
A, (+) —G,+ )r (1—u~„—n,ir)

r(—n „)r(1—n )g, (+) —G,+ )r (1 uNv n pr)

(iii) 6 terms:

(47)

I'(1—ng) I'(1—n~)
Ai(+) =D~i+ )

r(1 —u, —
n&ir)

r(1——,)r(1—
Bi'+' =D»i+(tp —t)

r(2 —n, —n~)
The trajectories are

n~=0 55+0 9t,. 3f =.P' or p

n~ = —0.85+0.9s,
u~„———1.15+0.9s,

and
ng ———0.4+0.9s.

By fitting to the values of the high-energy forward-
scattering amplitudes given in Table III and to the
spin-pairty structure of the baryon resonances, we
found the parameters

&~~+=4.5,
Ggg+= 11.6,

Eggy+= 18.7 G~g+= 7.1

Dgg 15.1 ) DQ] 7 9)
tp= 1.68 Lsolution (II 1)).

S~g+= 4.1,
Gpg+= 11.5,

&ai+= 15.9, Ggg+= 7.2)
D~x+= —34.8, Dgg&+= —13.1,

tp= 3.2, Lsolution (II 2)j,
with g'/4~=2. 8, rq=39 MeV, and I'N, =24 MeV.

The corresponding values of g'/4', rq, and r~, are
3.3, 22 MeV, and 24 MeV, respectively. LIn computing
these numbers, proper account has been taken of the
effect of the required (s,u) terms, wihch doubles the
values computed from (s,t) terms alone. ) These three
values are roughly a factor of 4 too small. For solution
(D 1), we made the pure isospin-p choice for the A.
Parameters determined from an alternating isospin
assignment for the 6 are
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In determining these two sets of parameters, we did
not enforce the values of the baryon residue function
near e= 0, known from the analysis of backward-
scattering data, as discussed in Sec. II D. It would
therefore appear that, regardless of this constraint or of
the difficulties associated with (s,u) terms, one is simply
unable to secure quantitative agreement, within the
model, between the magnitudes of the baryon resonance
widths and the values of the high-energy forward-angle
differential cross section. This disagreement is some-
what worse than in the kaon-nucleon problem; solutions
(I) and (I') in E1V were determined by methods similar
to those used in getting (II I) and (II 2), but gave widths
off typically by a factor of 2.

By introducing additional Veneziano beta-function
expressions into the problem, ones which contribute
asymptotically to nonleading order at t=- 0, one can, of
course, achieve magnificent agreement with the baryon
resonance widths. However, the paucity of relevant
data precludes any check on their significance. Ke will

not report such results here because they are simply
examples of curve fitting, even more blatantly so than
are solutions (II) and (II') of our E1V investigation.

(3) The model contains both the baryon resonance
poles and the associated Regge trajectories, and it
prescribes a procedure for extrapolating from the region
of physical scattering to the values of the resonance-pole
residues. Is this feature supported quantitatively in
nature?

(4) The model incorporates duality. Therefore, the
magnitudes of the widths of the baryon resonances
should be determined by the magnitudes of the t-channel
meson-exchange trajectories, and vice versa. Is the
quantitative relationship between these values, as
specified by the model, in agreement with the empirical
situation?

(5) Ina, smuch as the model is intended to be ap-
plicable over the entire range of values of s, t, and u, are
checks possible either at low energy or as s~ ~ for
fixed angles, away from N=O and t=0, and are these
verified in nature?

(6) To what extent is the daughter structure in the
model physically meaningful?

These are some of the questions to which we address
ourselves; within this framework, we propose the
following conclusions.

IV. DISCUSSION AND CONCLUSIONS

As a result of the investigation reported here, we can
offer several conclusions regarding the strong-inter-
action dynamics of the kaon-nucleon and pion-nucleon
systems. In this concluding section, we present our
estimate of the relevance and success of the Veneziano
beta-function representation for meson-baryon scatter-
ing. We then go on to summarize the phenomenological
status of the Pomeranchukon. Finally, we suggest that
a realistic scheme for quantitatively fitting experimental
data could be based on the asymptotic Regge-pole
content of the Veneziano model if one were to include
explicitly, in addition, the Regge cuts generated from
the poles. The Veneziano model has the distinctly
attractive feature, in this regard, of specifying precisely
the momentum-transfer structure of the Regge-pole
residue, including all nonsense factors. This could re-
solve a problem which has caused trouble in previous
investigations of high-energy reactions: Without an
unambiguous definition of the pole residue, it has always
been very difficult to distinguish phenomenologically
between poles and cuts.

A. Estimate of Success of Veneziano Representation

We begin by listing, in the form of questions, our
criteria for judging the usefulness of the Veneziano-
model representation.

(I) It it possible to write an a priori theoretically
justifiable and convenient parametrization of the meson-
baryon process in terms of the beta-function expansions?

(2) In terms of these general parametrizations, can
one reproduce as good fits to empirical high-energy dis-
tributions as are achieved in classical Regge-pole theory?

1.Parametrization of Meson Baryon-
Scattering Amplitudes

This 6rst item divides itself into two parts: (a) choice
of amplitudes and (b) pararnetrizations thereof.

(a) We chose to work with the standard invariant
amplitudes A(s, t,u) and B(s,t,u) because crossing prop-
erties can be specified most conveniently in terms of
these. However, retaining crossing has its price; as we
noted in Sec. I B, the amplitudes A and 8 are no&

especially natural for expressing the correct spin-parity
structure for the resonances or for guaranteeing posi-
tivity of their widths. Moreover, the high-energy
forward elastic scattering data are best described in
terms of the nonAip amplitude A', and not in terms of
A. This is significant, as discussed in Sec. III E, because
A' often turns out to be an order of magnitude smaller
than either A or 8.

(b) Other than vague simplicity, we could establish
no strong and easily implemented principles tor a priori
limitation of the types or number of beta-function terms
in the parametrization of A and B. As a working hy-
pothesis, we adopted the approach of starting with a
minimum set of terms and then adding subsidiary
terms, as necessary, to achieve the various requirements
discussed in Secs. I and II.' Finally, as a result of our
searches and Q.ts to the data, we found no systematic
tendency which would indicate that the coeScients of
subsidiary terms are small.

Z. High-Energy Regge-Pole Fits

Roughly speaking, the Veneziano parametrization,
per se, does as well as a noncontrived, classical Regge-
pole model in 6tting the high-energy differential cross-
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section data near the forward and backward directions.
However, this is true only if we ignore the questions of
over-all normalization, which will be addressed in con-
clusions (3) and (4). The t dependence of the forward
data is consistent with the suggestion from the model of
slowly varying residues with the traditional scale factor
s~ equal to 1/n'. Difficulties do arise as a result of
unobserved shrinkage (suggesting o.'((1) and un-
observed dips. The latter have been discussed in Sec.
II A for the forward-scattering data and in Sec. II D
for the backward direction. The most serious fault of
the predicted t dependence of the Veneziano model is
its failure to reproduce the crossover zero. However, all
of these difhculties are also present in classical Regge-
pole phenomenology unless one contrives to insert or to
remove nonsense factors, in a purely ad hoc manner, and
to vary the residue structure arbitrarily. Thus, the
Veneziano formalism suggests that the resolution of all
these problems lies not in even more complicated pole
parametrizations but rather in other explanations, such
as Regge cuts.

3. Pole Extrapolation

The failure in the case of the 6 trajectory is signifi-
cant, as we discussed in Sec. II D, but the Veneziano
model seem to provide an adequate parametrization of
the residue functions of the other major baryon tra-
jectories. Ke found that the residues of the states on
the E, Zp-Z&, and A -A~ trajectories are related well by
the model to the corresponding backward-scattering
data. Nevertheless, we are not sure that this agreement
should be taken seriously because of the failure with the
~, which is the best determined experimentally. On a
purely phenomenological level, however, our successful
residue parametrizations for the E and A -A~ tra-
jectories could be applied usefully to other elastic
reactions as well as to multiple-production processes.

Pole extrapolation tests are not meaningful for the
meson trajectories because the baryon-baryon-meson
residues are essentially unknown.

4. Duality

The expression of duality in the model is its most
attractive aspect. However, we found that the duality
structure of the model agrees with nature only in an
order-of-magnitude sense. For example, if in m E
scattering one makes the simplest choices of terms and
normalizes to the high-energy t=0 data, then the pre-
dicted values for g'/4', the pion-nucleon coupling con-
stant, and for I'q, the elastic width of the A(1238), are
typically a factor of 4 too small. Stated otherwise, in

order to achieve agreement with g'/4~ and Fq, one is

forced to accept the presence of terms with very large
coefficients which contribute asymptotically in non-

leading order at 3=0. Because all channels in the xE
process contain resonances, no low-energy checks on
these nonasymptotic terms are possible. In kaon-

nucleon scattering, good agreement with the baryon
resonance widths was obtained at the price of adding
such terms. There, a check on their effects at low energy
was possible through a study of the E+p and E+n
reactions. As reported in Sec. III D, our examination
of the E+e CEX reaction indicated only fair agreement
at low energies.

5. I.ow-Energy and Fixed-Arlgle Behavior

Certain low-energy tests of the Veneziano-model
amplitude are possible in pion-nucleon scattering, but,
for the most part, the full power of the model cannot
be realized because of the unitarity convict. For the
reasons already given in Sec. I 6, we have no con-
clusion regarding whether the PCAC condition is
consistent with the model. It probably could be made
so, but without any attendant consequences. A similar
remark. applies to the scattering lengths, in that there
are not enough additional low-energy checks to render
meaningful predictive power from a forced agreement
with PCAC and the scattering lengths. It is already too
obvious from studying just the high-energy data that
a large number of nonasymptotic, subsidiary terms are
required.

This fundamental drawback is less damaging in
kaon-nucleon scattering. As we noted in Sec. III D,
however, too large an 5-wave component is present in
the model, and it is not easy to remove it without also
removing the necessary I' wave. The scattering lengths
in our best solutions are correspondingly a factor of 2

too large. Ke discussed other aspects of the incon-
sistency between low- and high-energy fits to the EE
data in Sec. III.

In general, much of the model's potential is unrealized
because of the unitarity difficulty associated with zero-
total-width resonance poles located on the real energy
axes. One conceivable remedy for the mX problem
might involve trying to determine the coe%cients of the
necessary subsidiary terms by fitting the detailed xlV
phase-shift data. For example, this could be accom-
plished on a limited basis by equating the integral of the
discontinuity of the Veneziano-model amplitude, across
the real axis, with the same quantity derived from the
phase shifts.

We insert a plea at this point for more good data at
aQ energies. Irrespective of the details of the Veneziano
model, it is likely to be followed by other models which

closely relate high- and low-energy phenomena. There-
fore, it would be most advantageous to have much
better information on both the isospin and energy
dependence of the ES system. Additional polarization
measurements in the elastic and CEX processes would

also be most useful in indicating the magnitude of the
background contribution in both 3-channel isospin
states. The Veneziano model predicts a purely real EE
amplitude in all charge states; the only imaginary part
comes from the addition of the I&=0 Pomeranchukon.
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Improved measurements are desirable at both high and
low energies.

We have not taken seriously the predictions of our
parametrizations for the large-s fixed-angLe behavior
because the rather accurate pp data indicates that
phenomena in that region are dominated by effects
outside the model, such as cuts. In particular, the
distribution in momentum transfer for the pp scattering
data exhibits a change of slope at a value of t which
varies in position from t= —0.5 (GeV/c)' at P~„b=5.0
GeV/c to t= —1.0 (GeV/c)' at P~,b ——19.0 GeV/c. Any
currently accepted Pomeranchuk parametrization, or
the Veneziano formalism, in its asymptotic limit, "fails
to reproduce this experimental feature. It is easy to
show that the Pomeranchuk. Regge-pole contribution
alone falls very far below the data in the intermediate-
angle region. '~

6. Daughters @ed I'arity DolbEeg

We did not make a concerted attempt to tak.e the
daughter' structure of the model seriously, but some
reflections emerge. (a) In pion-nucleon scattering, for
example, an almost inevitable consequence of a Vene-
ziano-model parametrization for the amplitudes A and
8 will be the appearance of daughter states generated
by the 6 trajectory in both the isospin I=~ and I=2
configurations. Such diseases can, of course, be remedied
by the addition of compensatory subsidiary beta-
function terms, but the process of correcting for the
secondary diseases could go on ad ittfittitum (b) T.he
daughter trajectories in the pion-nucleon problem will
not have definite signature, even though this property
may have been enforced for the states along the parent
trajectory. (c) For all four solutions to the kaon-nucleon
process, (I), (I'), (II), and (II') in Sec. III, we computed
the elastic widths of the daughter states up to J=~~
in all cases, most were positive and of a size similar to
those of the parents. This result does not seem un-
reasonable, but we have not pursued a detailed com-
parison with experiment. We made comments in Sec. III
on the size of daughters expected on the basis of the
quark. model.

One rather model-independent statement about the
leading baryon trajectories is that they will create
parity-doubled mass-degenerate states. The elastic
widths of the two states in a given pair can differ
greatly in the low-mass region, but they grow increas-
ingly independent of parity as the mass is increased
along the trajectory. This asymptotic limit is rather
slowly realized in solutions (II) and (II') of Sec. III;
even at J=~~, the wrong parity states of both the

"Either the 6xed-t s ~ ~ or the Axed-angle s —+ limit leads
to this conclusion.

'r S. Frautschi and B. Margolis [Nuovo Cimento 56, J&55
(1968)g have explained these pp data in terms of multiple-scatter-
ing corrections to a Pomeranchukon of slope 1. See also M.
Cassandro et al. , Rome Report No. LNF-68/74 (unpublished).

A -A~ and Zp-Z& trajectories have roughly ~ the elastic
width of their partners. Nevertheless, this degeneracy
should be borne in mind when meson-baryon scattering
data are analyzed for the spin-parity structure of
resonant states. The daughter states are also, of course,
predicted to be parity-doubled. The typical sizes of
these effects can be appreciated from a glance at Table
VI. We have no practical or helpful suggestions to make
to those seeking to untangle the spin-parity structure of
such mass-degenerate towers in the experimental data.

B. Pomeranchukon

We have studied the Pomeranchukon in processes
where there are direct-channel resonances, such as
~X, EX, and pp scattering, as well as in those without
resonances. Our analysis of m+p scattering showed
explicitly that a Pomeranchuk trajectory with high
slope (nt'=1.0) is consistent with the data. For re-
actions of the second type, we offer two considerations.
(a) In Sec. III, we pointed out that a Pomeranchukon
constrained to fulfill the Veneziano-model residue
structure and the relation ss=1/o. ' cannot reproduce
simultaneously both the s and 3 dependence of the data.
However, the 6ts in Fig. 14 strongly suggest that the
difficulty is associated with the way the Veneziano
model handles the I" and ~ quantum-number ex-
changes. Any simple scheme in which the I" and ~
trajectories are exchange-degenerate will predict a zero
in the te quantum-number amplitudes at n„(t) =0. In
nature, the zero is not observed. there, but at the cross-
over point t~—0.2 (GeV/c)' in the A' amplitude. In
order to fit the data, we are compelled to include addi-
tional poles or cuts; the effects of these would be suK-
ciently large that it seems likely that a Pomeranchuk.
trajectory having slope o.&'= 1 would also be admissible.

(b) Our second consideration involves states with exotic
quantum numbers. We demonstrated in Sec. III E that
the Pomeranchuk trajectory may well be associated via
duality with the bump of Cool et ttl. s4 (or Z*) seen in KX
processes. This interpretation indicates that exotic reso-
nances will have values of mass squared roughly 2 GeV'
greater than that of the lowest nonexotic states and
values of spin typically one or two units smaller than
those of the nonexotic states of similar mass. We would
certainly encourage experimental eRort aimed at locat-
ing and studying the properties of enhancements which
have exotic quantum numbers. '

Our agruments are hardly conclusive, and so we can
only stress that there is really no compelling evidence
for or against the conjecture that the Pomeranchukon is
an object essentially different from any other Regge
trajectory. "

C. Phenomenological Uses of Veneziano Formula

Perhaps the most striking success we found for the
Veneziano model was the agreement, within a factor of
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2, for the E+u ~E'P process over the entire range of
measured energies. This is illustrated in Fig. 13. We
hasten to point out, however, that this agreement was
not achieved in the most straightforward manner.
Specifically, successful application of the model to data
analysis requires, at least, that one construct scattering
amplitudes which enforce explicitly the observed spin
and isospin structure of the low-energy spectrum.
Although this is sometimes equivalent to using a single
beta-function term, as has been proposed for
scattering, ' 4 more care is required when the external
particles have nonzero spin. Complicated sums of beta-
function expressions may be required, in general, with
the result that one loses the attractive simplicity of the
original Veneziano proposal. Moreover, it is not often
easy to visualize in advance what the over-all effects
will be when one varies the values of the constant
coefficients multiplying the various beta-function terms.

With respect to ensuring the correct spin-parity
structure, a very useful technique exists for determina-
tion of the desired expansions. As we described in
Sec. II 8, one first deduces the positions of the zeros in
t and I required of the invariant amplitudes by the
angular functions dq„'(8) associated with observed spin
and parity values of the physical spectrum. Subse-

quently, the Veneziano beta-function expansions Inay
be designed to match this analytic structure at the pole
residues. However, the examples we have studied indi-
cate that even this will not guarantee detailed agree-
ment with experiment. '

At high energy, the difhculties of the Veneziano model
are essentially those which also beset classical Regge-
pole models. Nevertheless, an attractive phenomeno-
logical feature of the model is that it does offer a
reasonably unique definition of the form of the Regge-
pole contribution to a given reaction. The Veneziano
approach specifies the relation so ——1/n' and the presence
of all the nonsense zeros in the residue function, and it
predicts shrinkage characteristic of a universal trajec-
tory slope near unity. This aspect could be exploited in
a scheme which attributes the empirical deviations from
such a simple Regge-pole description to the effects of
cuts and not to complicated residue functions" and/or
to random trajectory slopes adjusted for nature' s
whims. With the Regge-pole structure given by the
Veneziano formalism, it will be possible to test various
models of cuts without the customary ambiguity of the
traditional Regge-pole models. Cuts generated from the
absorption mode134 using input pole residues similar to
those we just described have been studied recently with
some encouraging successes. "
"For an appraisal of detailed beta-function fits to data in the

resonance region, see E. L. Berger, in I'roceeChngs of the Con-
ference on xx and Xm Scattering (Argonne National Laboratory,
Argonne, Ill. , 1969).

G. C. Fox and L. Sertorio, Phys. Rev. 176, 1739 (1968).
See, for example, C. B. Chiu and J. Finkelstein, Nuovo

Cimento 57A, 649 (1968);59A, 92 (1969);R. C. Arnold and M. L.
Blackmon, Phys. Rev. 176, 2082 (1968).

APPENDIX A: KINEMATICS AND NOTATION

We collect and present in this appendix our explicit
definitions of the various amplitude functions used in
the text and their relationships to measurable cross
sections and resonance widths.

With reference to Fig. 1, we define

=(P+ )'=(P'+ ')' ~=(P P')'=—4 0')'—
and

u = (P V')'= (P—
' V)', —

where p (p') and q (q') are the four-momenta of the
incident (outgoing) baryon and. meson, respectively.
The S matrix is given, with isospin labels suppressed, as

Sr, ;=by, ,+i(2')'8(P'+g' —P —g)Ti, ;, (A1)
with

2'(P', ~', P,~) =u(P')L~+2(0+0')B ju(P) (A2)

The functions A(s, t,u) and B(s,t,u) are free of kine-
matical singularities; our Dirac spinor amplitudes
satisfy (P—M)u(p) =0 and u(p)u(p) =2M. In this
paper, M denotes the baryon mass and p, the meson
mass. We define the kinematical quantity

Ea = (syM' —p, ')/2s'" (A3)

which is the energy of the baryon in the s-channel
center-of-mass system; the corresponding E„is obtained
from (A3) by replacing s with u.

We will also use v =-', (s—u) and

a) = (s—M'+ p')/2s'~'.

l. Eartiat-H/'ave Amalysis

The usual f,' functions are

fi' DE,+M)/87rs'~'——)PA+(s'~' M)B) (A4a)—
and

f2'= f(E, M)/s~s'")$ Ay(—s'"+M)B~. —(A4b)

In terms of these functions, partial-wave amplitudes
associated with a particular total angular momentum J
and parity I' = —(—1)~ are given by

«Lfi'-Pr (&)+f2'&r+i(&)j (A3)

where s is the cosine of the s-channel center-of-mass
scattering angle, given in terms of s and t by

s = 1+t/2g' (A6)
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with
q'= Ps —(M+ti)']Ls —(M —p)']/4s.

Eq. (34) of the text may be expressed. in terms of theirs
(A7) Lsee their Eq. (15)]by

Notice that

a.nd tha, t
f r( sl/2) f 8(si/2)

QQ —j+i/'g (s ) QL J—1/2 ( s ) )

Z. Eesoemsce H'idths

Near a resonance of mass M~, total width I', and
elastic width I',i,

the usual MacDowell-symmetry statement. In the text,
we use

f(ul 2) =A —(ul 2 —M)B = LS&ul 2/(P +M)]f ~(ul 2)

y" (u' ') =16(1/iso) —' 'F(n+-', )rHc(u'"), (A12)

where yg~ is, of course, the reduced residue function of
Barger and Cline. The quantity so is their scale factor,
t/ is the trajectory slope, n=n(0)+bu, and the factor
F(n+-,'-) enters because they keep only the (n+-', )(n+2)
factor from LF(n+-', )] '.

4. Isospie Conventions

(a) vrX scattering For .pion-nucleon scattering, we
express our results in terms of the (+) amplitudes.

In terms of these, the amplitudes in the s channel for
a sta, te of definite isospin I, A, ' and B. are

F.i/i&R/qa
a~(s) ~—

3I~' —s —iI'M g
(AS) (A13a)

where qa is obtained upon setting s=M~' in (A7).
In the zero-total-width Veneziano-model approach,

the "resonances" occur on the real energy axis, and thus
the imaginary term in the denominator of (AS) vanishes.
One may, nevertheless, expand the expression, given by
the Veneziano representation, for the left-hand side of
(AS) and identify the corresponding F,i expressions as
the "elastic widths" of the various pole terms.

3. Digererttial Cross Sectior/s

Several alternative forms may be given for the
differential cross sections. It is traditional to use either

do/dQ=
~
fi'+fg'~ '+(t/q') Re(fi'*fi') (A9)

(A13b)

For v+p elastic scattering and for 7r
—p~ 7r'n in the

s channel, we have

A.(~-p ~ ~ p) =A &+'+A ' ',

A, (~+p~~+p) =A'+' —A' ',

A, (v. p —+sr'n) = —v2A' '.

(A13c)

(A13d)

(A13e)

The same algebraic equations hold for 8, in terms of
,

B'+ . The + (—) amplitude is associated with a state
of definite isospin /, =0 (1) in the t channel. For
n-chaiinel scattering, the amplitudes A„l for a state of
definite isospin I are

or, more commonly in Regge-theory fits,

do 1 /Mq'-t

dt vsq'E 4) 5 4M')

(M+X&,b)
'

4M'E 1 t/4M'—

A '~'=A(+) —2A

A 3/'=A'+i+A& &.

(A14a)

(A14b)

3ga, in, the sa,me algebraic equations hold for 8„ in
terms of Bi+i. However, in the definition of fi" (or any
other u-channel quantity) the sign of B is the opposite

(A10) of that appropriate in the s-channel amplitude. This is
also true in EE scattering. Explicitly,

Fi,b+t/4M
A'=A+ B,

1—t/4M'
(A11)

and Ei,b=(s —M' —ti')/2M. In terms of the non-spin-
Qip amplitude A', the total cross section is given by
or(s) = PmA'(s, t =0)]/p~, b. Because we write a Vene-
ziano representation for A and 8, it is convenient to use
(A10) for backward scattering, also, after replacing t

by 2M'+2ti' —s—u. Note, also, that the coefficient of
~B[' in (A10) is proportional to sin20„and therefore
vanishes for both forward and backward scattering.

For the convenience of those making comparisons
between our results a,nd those of Barger a,nd Cline
(BC),'~ especially as regards the backward data, we
remark here that our reduced residue y &/&(u'/2) given in

fi"=$(E +M)/Sv. u"']LA —(u'" —M)B] (A15)

This should be contrasted with Eq. (A4a).
In order to make our. normalizations and sign-con-

vention statements more explicit, we remark that at
the nucleon pole position„

1 1
&+B'( t,s)u= g'i

kM' —s M' —u
(A16)

Because there is no parity partner for the nucleon, our
A&+ ( ~t,s)uamplitudes have no pole at the nucleon
position.

(b) EX scattering. The expressions for the experi-
mental amplitudes in terms of our s-channel states of
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A (0)- — i 3--A &o)-
2 2

(A18)

In Table III, the isospin convention is such that

A(K p +K p)=A—~—'+A "+A&+A"' (A19)

normalizes the four f-channel amplitudes corresponding
to the four isospin —G-parity combinations (0, +),
(0, —), (1, +), and (1,—), respectively.

APPENDIX 8: DESCRIPTION OF FITS
DISPLAYED IN FIG. 2

In Fig. 2, two fits to the ir p elastic differential cross
section are presented. "The parameters of the fits were
actually obtained from a simultaneous minimum X' fit
to all available vr+p and sr p elastic as well asir p —+ sr n
da, ta above the lab momentum 5 GeV/c and in the t-
interval 0(~t~ (1 (GeV/c)'. Data on polarization,
do/dh, o&,t, and Re/Im were used. For both fits, the I',
I", p, and p' Regge poles were employed, and their
residue functions were parametrized staidly, as in the
paper of Fox and Sertorio. "In the context of t-channel
helicity amplitudes, the residue functions were written
as linear functions of t, permitting, for instance, the I"
residue to develop a zero in the physical region. These
are "classical" Regge-pole-model fits: The several tra-
jectory intercepts and residue parameters were varied.
independently in achieving the best fits.

The distinction between the two fits is basically that
in Fig. 2(a) the Pomeranchuk. trajectory has slope 0.7,
as recommended by Dikmen, "whereas in Fig. 2(b) its
slope is 0.3, as in Rarita et gt."As explained in the text,
the absence of shrinkage in the data is obtained in (a)
through the vanishing of the I" residue at t= —0.2
(GeV/c)'. The &' for fit (b) is somewhat snialler than
than for (a): 400 versus 435 on the 450 elastic scattering
points. (These X' values are actually artificially reduced
because the errors on the lower-energy data points were
increased" in the fit to simulate neglected lower-lying
trajectories. )

' The data plotted are a selection of those used in the over-all
fit. Those at 5 and 6 GeV/c come from C. F. CoKn et al. , Phys.
Rev. 159, 1169 (1967), and the rest from K. J. Foley et hd. , Phys.
Rev. Letters 11, 425 (1963); 15, 45 (1965).

Explicitly, the errors from 5 to 9 GeV/c were increased by a
factor 1.75, and from 9 to 12 GeV/c by 1.25.

definite isospin are

A (K-p-K-p)=-'(A "+A. ),
A (~& p E'n) =2( A.—"'+ &.'"). (A17a)

In the I channel,

A (K+p~K+p)=A '",
A„(K+rs —+E'p) =-'( —A '"l+A t") (A17b)

The s-I crossing formula is

Ke feel that neither fit should be accepted unci itically

outside the range
~

t
t
(0.5 (GeV/c)' because like 6ts do

not work successfully in pp scattering for —t)0.5
(GeV/c) ', over a simila. r energy range. (See our comment

in Sec. IV B.) If, as a consequence, one restricts atten-

tion to the smaller t range L~t~ (0.5 (GeV/c)'j, the

errors in the determination of the Pomeranchuk-tra-

jectory slope grow; undoubtedly, a slope of 1 is con-

sistent with fit (a) a.nd a slope of 0 with fit (b).
A second note of caution relates to FESR results.

The fits given do not reproduce well the FESR results, '

which have the rather low cutoff s'~'= 2.19 GeV'. The

discrepancy would disappear, however. , if the larger

t values L )
t

~
)0.5 (GeV/c)'j were neglected.

The outcome of the explicit Veneziano-model 6ts to
EE scattering, described in Sec. III, also sheds some

light on the high-slope Pomeranchukon fit. As will be

recalled, in the EX situation the residue functions for

the I" and ~ Regge poles did not naturally have the

crossover zero. This result tends to support the par-

ticular alternative, discussed in Sec. II A, in which the

residue of the I" Regge pole vanishes at t= —0.6
(GeV/c)' and in which the zero at t= —0.2 (GeV/c)' is

achieved only as a result of the mixture of the I" plus

the absorption cuts, which remove the low partial
waves. The suggestion is, therefore, that the I" used in

the fits of this appendix is not really a simple pole.

However, left unaltered is our basic contention that the

xÃ elastic data admit a good 6t with a Pomeranchuk

trajectory of high slope.
Dikrnen has given fits to Kfl/ and pp scattering using

a Pomeranchukon of high slope. "His results are difficult

to interpret within our framework, however, until a

procedure is devised for removing the unobserved zero

at t= —0.6 (GeV/c)' from the amplitude with the co

quantum numbers. See Fig. 14 and Sec. III E on this

poliit.
Kith respect to the point about removing unobserved

zeros from amplitudes, Igi' has suggested that the

corresponding Veneziano-model prediction of zero cross

section in s.X CEX at t = —0.6 (GeV/c)' will be

rendered compatible with the data if nonasymptotlc
terms are retained. He has in mind. employing the terms

in his Veneziano expansion which fall lik.e s ' in com-

parison with those of the leading Regge pole. However,
there is evidence from )do/dh(K P elastic) —do./
dt(K+P elastic)], [do/dt(P77 elastic) do/dt(PP elastic)]-,
do/dt(ylV —+ 7r E), and both the polarization and do/dh

data on m. p-+ m'e that the energy dependence in the

dip region does not differ appreciably from that ex-

pected of the leading pole. '4

"F.N. Dikmen, Nuovo Cimento Letters 1, 544 (1969), and
private communications.

'4 G. C. Fox, unpublished calculations, and in Proceedings of
tlze Stony Brook Conference on IEzgh-Energy I'hysics, 1069 (Gordon
and Breach, Science Publishers, Inc. , New York, 1970).


